DR JEFF
CALIFORNIA I8|SOFTWARE
STATE UNIVERSITY INDIE APPDEVELOPER

NORTHRIDGE COM P 122 © Jeff Drobman

2016-2022

CSUN

COMP122

Rev 2-22-22 —

ASSEMBLY Programming/ISA
ARM

Dr Jeff Drobman

website m) drjeffsoftware.com/classroom.html

email = jeffrey.drobman@csun.edu

CALIFORNIA
STATE UNIVERSITY

COMP122

ARM Index

SF 9| DR JEFF
&) SOF TWARE
© Jeff Drobman
2016-2022

**ARM History = slide 3

**ARM CPU Models = slide 12
**ARM OS’s =2 slide 54

**|ISA = slide 58

+*SDK/IDE: ARMsim -2 slide 78

s Assembly = slide 92
s*Instruction Set =2 slide 131
s*Website: coranac =2 slide 137
**ARM Ref Man Intro = slide 144
**ARM RM Instr Set = slide 159

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM History

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

03 A
Acorn RISC Machine ARMS | ARM Cortex R ik
M
92 1

Acorn Computer

e

ARMolA
483 90

The Acorn Archimedes is a
family of personal computers

Le g en d Cambridge, England. The systems
were based on Acorn's own ARM
C P U d e Si g n archit.ecture proce§sors and the
proprietary operating systems
Arthur and RISC OS. The first
CO m pa ny models were introduced in 1¢

pple+VLSI

designed by Acorn Computers of

Advanced RISC Machines ARM Holding Softbank Nvidia

98/ " \16 1 20

@@ DR JEFF
CSUN 23| soFTwARE
T ARM O e Brobman
NORTHRIDGE

2016-2022
COMP122 19 85 | Arm architectures
ARM architecture arm
The Arm logo
From Wikipedia, the free encyclopedia Designer Arm Holdings
Bits 32-bit, 64-bit
JAN24\V/\VZeftroduced 1985; 35 years ago
RISC
~ Jister-Register

\dition code, compare and
wanch

Arm (previously officially written all caps as ARM and usually written as such today), previously Advanced RISC
Machine, originally Acorn RISC Machine, is a family of reduced instruction set computing (RISC) architectures for
computer processors, configured for various environments. Arm Holdings develops the architecture and licenses it to
other companies, who design their own products that implement one of those architectures—including systems-on-chips
(SoC) and systems-on-modules (SoM) that incorporate memory, interfaces, radios, etc. It also designs cores that
implement this instruction set and licenses these designs to a number of companies that incorporate those core designs
into their own products.

Processors that have a RISC architecture typically require fewer transistors than those with a complex instruction set
computing (CISC) architecture (such as the x86 processors found in most personal computers), which improves cost,
power consumption, and heat dissipation. These characteristics are desirable for light, portable, battery-powered
devices—including smartphones, laptops and tablet computers, and other embedded systems[2I4l5] —but are also useful
for servers and desktops to some degree. For supercomputers, which consume large amounts of electricity, Arm is also a
power-efficient solution. €]

CSUN . B sorrware

ARM Histo 'y © e Drobman

COMP122 1990 joint venture
Cambridge-based Arm Ltd was founded in 1990 as a joint venture

between Apple, Acorn Computers and VLSI Technology. It designs
software and semiconductors — components of electrical circuits that
are used to manage the flow of current.

It is not just the UK's largest tech company but a genuine global
powerhouse that has, in the space of 30 years, grown into a $40bn
(£31bn) business with more than 6,000 employees.

What's so great about it?

Its semiconductor chips are the building blocks of a string of
consumer favourites. Apple uses them in its iPhone, iPad and Apple
Watch products, but you'll also find Arm chips in the Playstation Vita
and Nintendo DS and Wii gaming devices and Garmin satnavs, as well
as Sony Ericsson and Samsung Galaxy phones. Its chips are
increasingly used in the rapidly-expanding web of connected devices
known as the “internet of things”.

= DR JEFF
CSUN . 25 soFTWARE
T ARM Histo ry O i robmman
ARM architecture 2016-2022
COMP122 .
From Wikipedia, the free encyclopedia ~— Acorn RISC Machine

Name |[edit]

The acronym ARM was first used in 1983 and originally stood for "Acorn RISC Machine". Acorn Computers' first RISC processor was used in the original
Acorn Archimedes and was one of the first RISC processors used in small computers. However, when the company was incorporated in 1990, what 'ARM'
stood for changed to "Advanced RISC Machines", in light of the company's name "Advanced RISC Machines Lid." — and according to an interview with
Steve Furber the name change was also at the behest of Apple, which did not wish to have the name of a former competitor — namely Acorn — in the name
of the company. At the time of the IPO in 1998, the company name was changed to "ARM Holdings",['8! often just called ARM like the processors.

On 1 August 2017, the styling and logo were changed. The logo is now all lowercase (‘arm') and other uses of the name are in sentence case (‘Arm’)
except where the whole sentence is upper case, so, for instance, it became 'Arm Holdings',['®! and since only Arm Ltd.

Founding |edit]

The company was founded in November 1990 as Advanced RISC Machines Ltd and structured as a joint venture between Acorn Computers, Apple, and
VLSI Technology. Acorn provided 12 employees, VLSI provided tools, Apple provided $3 million investment.[2%2'] Larry Tesler, Apple VP was a key person
and the first CEO at the joint venture.[2223] The new company intended to further the development of the Acorn RISC Machine processor, which was
originally used in the Acorn Archimedes and had been selected by Apple for its Newton project. lts first profitable year was 1993. The company's Silicon
Valley and Tokyo offices were opened in 1994. ARM invested in Palmchip Corporation in 1997 to provide system on chip platforms and to enter into the
disk drive market.[24l25] |n 1998, the company changed its name from Advanced RISC Machines Ltd to ARM Ltd.[?5] The company was first listed on the
London Stock Exchange and NASDAQ in 1998[27] and by February 1999, Apple's shareholding had fallen to 14.8%.[28]

In 2010, ARM joined with IBM, Texas Instruments, Samsung, ST-Ericsson (since dissolved) and Freescale Semiconductor (now NXP Semiconductors) in
forming a non-profit open source engineering company, Linaro.[2°]

CSUN . B sorrware
ARM History G
COMP122 ARM architecture 2016.2022

From Wikipedia, the free encyclopedia

Advanced RISC Machines Ltd. — ARM6 | edit]

In the late 1980s, Apple Computer and VLSI Technology started working
with Acorn on newer versions of the ARM core. In 1990, Acorn spun off the
design team into a new company named Advanced RISC Machines
Ltd.,[431441l45] which became ARM Ltd. when its parent company, Arm
Holdings plc, floated on the London Stock Exchange and NASDAQ in
1998.[46] The new Apple-ARM work would eventually evolve into the ARMS,
first released in early 1992. Apple used the ARM6-based ARM610 as the
basis for their Apple Newton PDA.

There have been several generations of the ARM design. The original ARM1 used a 32-bit internal structure
but had a 26-bit address space that limited it to 64 MB of main memory. This limitation was removed in the
ARMv3 series, which has a 32-bit address space, and several additional generations up to ARMv7 remained
32-bit. Released in 2011, the ARMv8-A architecture added support for a 64-bit address space and 64-bit
arithmetic with its new 32-bit fixed-length instruction set.[®l Arm Ltd. has also released a series of additional
instruction sets for different rules; the "Thumb" extension adds both 32- and 16-bit instructions for improved
code density, while Jazelle added instructions for directly handling Java bytecodes, and more recently,
JavaScript. More recent changes include the addition of simultaneous multithreading (SMT) for improved
performance or fault tolerance.[*!

. DR JEFF
CSUN . 25 soFTWARE
e CALTORNIS ARM Histo ry O i Drabman
comp1ry ARM architecture 2016-2022
From Wikipedia, the free encyclopedia — UCB PrOf DaVid Patterson RISC I

Design concepts |edit]

The original Berkeley RISC designs were in some sense teaching systems, not designed specifically for outright performance. To its basic register-heavy
concept, ARM added a number of the well-received design notes of the 6502. Primary among them was the ability to quickly serve interrupts, which
allowed the machines to offer reasonable input/output performance without any additional external hardware. To offer similar high-performance interrupts
as the 6502, the ARM design limited its physical address space to 24 bits with 4-byte word addressing, so 26 bits with byte addressing, or 64 MB. As all
ARM instructions are aligned on word boundaries, so that an instruction address is a word address, the program counter (PC) thus only needed to be 24
bits. This 24-bit size allowed the PC to be stored along with eight processor flags in a single 32-bit register. That meant that on the reception of an
interrupt, the entire machine state could be saved in a single operation, whereas had the PC been a full 32-bit value, it would require separate operations
to store the PC and the status flags.[®0]

Another change, and among the most important in terms of practical real-world performance, was the modification of the instruction set to take advantage
of page mode DRAM. Recently introduced, page mode allowed subsequent accesses of memory to run twice as fast if they were roughly in the same
location, or "page". Berkeley's design did not consider page mode, and treated all memory equally. The ARM design added special vector-like memory
access instructions, the "S-cycles", that could be used to fill or save multiple registers in a single page using page mode. This doubled memory
performance when they could be used and was especially important for graphics performance.3']

The Berkeley RISC designs used register windows to reduce the number of register saves and restores performed in procedure calls; the ARM design did
not adopt this.

Wilson developed the instruction set, writing a simulation of the processor in BBC BASIC that ran on a BBC Micro with a second 6502 processor.[32](33]
This convinced Acorn engineers they were on the right track. Wilson approached Acorn's CEO, Hermann Hauser, and requested more resources. Hauser
gave his approval and assembled a small team to design the actual processor based on Wilson's ISA.[34] The official Acorn RISC Machine project started
in October 1983.

DR JEFF

: . D
Nvidia Buys ARM &t

2016-2022

COMP122

I NVIDIA (NVDA)
517.28 +30.70 [+6.31%]

INTRA DAY
540 ¢

525¢

510¢

R 517.28
486.58
CLOSE . . S
9:304 12p 2 4p
R i AN 3, s
MARKET INTO THE

BIOTECH 2
BOOST WANNA'BET? |\ NTERNALS CLOSE

NVIDIA TO BUY ARM HOLDINGS FOR $40B

CSUN - B sorrware
pmCuronNis Nvi d 1a Bu Y s ARM SRET

COMP122 2016-2022
S40B —

What will be the ramifications on ARM's business if
NVIDIA acquires ARM from SoftBank?

@ Jeff Drobman - just now
W' Lecturer at California State University, Northridge (2016-present)
my guess is that the DOJ will lay a heavy hand (or arm) on this deal: permitting it only if

Nvidia agrees to an "arms-length” (puns intended) management. Nvidia will likely have to
agree to continue licensihg its many core designs and ISA's, especially ARMv7 and ARMvS8.

Actually the UK equiv
» Japanese conglomerate Softbank bought ARM Holdings in 2016 for $32B

What does Nvidia say?

Nvidia boss Huang has sought to allay such fears, promising to keep
the Arm brand and expand its Cambridge HQ.

“We will expand on this great site and build a world-class artificial Al

intelligence research facility, supporting developments in healthcare,
life sciences, robotics, self-driving cars and other fields,” he said.

DR JEFF

° °)
CALIFORNIA % SOFTWARE
Nvidia + ARM S S

2016-2022

' 'NVIDIA
321,98 +7.63 [+2.43
Y INTRA |
’ W ‘
#.F 3435
'r’ CLOSE
9:30A 12p 2
g J.CNBC 2:23p ¢
g | ;
vews = | FTC SUES TO BLOCK N =

ALERT .% NVIDIA’'S ARM ACQUISITION pounp 13

600 Smallca) (.SML) 1359.69 +37.07 Russell 2000 (.RUT) 2205 1R T:\:!
le US (TMUS) 110.23 A 3.51 Invesco QQQ Trust (QQQ) 389.92 4 | Yleld 1.443%

= DR JEFF
CSUN 252 soFTwARE
era TN ARM O i robmman

2016-2022
COMP12

ARM CPU Models

** Timeline of models
** Apple A series (A12-15)
** New models

(J CPU: Cortex A-78
d GPU: Mali
(J NPU: Ethos

DR JEFF

25 soFTwARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM 1 Die Sim

Mousewheel or Z,X keys:
Left-drag: rotate
W,A,S,D: pan

O4)>

cycle:77 phi2:0 A:00000050 D:0£000000 r
r15(pc):00000034 (USR) nzcvifss r0:0£00000(
Hz: 3.7

zoom

http://visual6502.org/sim/varm/armgl.html

Pop out Color Fast

I P - !
A N J'J J B ﬂ.} st mig&&&-._n Fed A A Wi

phil phi2 ale abe dbe abrt irq firqg

—— P oo
e ———————————————— -

. o 1t e Bt B W sl o T B B ra-‘v#ﬂtm*"‘“”“"“

1 0 1 1 1 o0 1 1

reset seq m0 ml bw rw opcmreqtran
0 0 : 1 1 1 1 0 0
rl5 (pc)rld (link) rl3 rl2
00000034 ffffffff fEfffffff fEFEFF~FeF
rll rl0 r9 r8
ELfrffrf FEFLFFFf EEFFEFFFFFPFFFeT
r7 r6 r5 r4
fEfFfEFff FEFEFFFELE SEEFFEFEF FEFFFFFS
r3 r2 rl r0

00000050 00000009
rl4_svc rl3_svc
00000028 fE£ffffff
rl4 irq rl3 irqg
EEFEEFFE FEFEEFESF
rl4_fiq ri13_fiq
s o o o o il o i o

0000000£ 0£000000

rl0 fiq
fEEFFFESE
rl2_fiq rll_figq
EEEFEEEE FECEEFLS

Downloads complete, version 019

© Visual6502.0rg

ARM1 geometry provided under EULA with ARM

T+4d _ 1IR

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

=W DR JEFF
254 soFTwARE

© Jeff Drobman
2016-2022

ARM CPUs

: Cortex-A:
CPU Family % A5
o A7

X Cortex-A .

Supreme performance at optimal power

*

» A9

L)

Cortex-R

Reliable mission-critical performance

K/ K/ K/ K/ K/
000 000 000 000 000
w
\}

Cortex-M

Powering the most energy-efficient embedded devices

8/16-bit MCU

K/ K/ K/ K/
000 000 000 000

&

D)

» AGSAE

L)

R
ol ol o
~
w

&

D)

s A76AE

L)

K/ K/
000 000

DR JEFF

C | SOFTWARE
GAEE SRIURRRTER © Jeff Drobman
NORTHRIDGE A R IVI 64/A R IVI V8 eff Drobman

2016-2022
COMP122

- e w=

»
"
»
»
-
"~
~
.
W
-~

-
-

AArch64 or ARM64 is the 64-bit extension of °
the ARM architecture.

CSUN B soFrware
ARM vs x86 re RISC

COMP122

' Jerry Coffin
7h ago

ARM is a RINO: RISC In Name Only. It's not really significantly more RISC than
modern x86, and less "RISC” than (for one obvious example) the PDP-11.

Windows NT started out on MIPS, and was later ported to x86, PowerPC, and
Alpha. Much more recently, Microsoft ported Windows to ARM. So no, MIPS,
Alph ... (more)

{>» Upvote <A Reply Y oo

@ Jeff Drobman 9@,

Just now

biggest feature of RISC is single-cycle instruction execution, with scalable
clock frequency due to deep pipelining. next comes a large set of general
registers, which x86 never had. the more registers, the less need for D-cache.
ARM has these qualities, even though ARMv7 was a bit too complex with all
instructions being conditional (leaves pipeline bubbles). MIPS has essentially
evolved into RISC V under Prof. Patterson.

CSUN : : B sorrware
e ARM Cores 7-11 Timeline — iewm

2016-2022
COMP122

ARM core timeline |edit)

The following table lists each core by the year it was announced.!8%I%0] Cores before ARM7 aren't included in this table.

Classic cores Cortex cores
Year Applic:
ARM7 ARMS8 ARM9 ARM10 ARM11 Microcontroller Real-time (32-b
1993 | ARM700
ARM710
1994 ARM7DI
ARM7TDMI
1995 ARM710a
1996 ARM810
ARM710T
1997 ARM720T
ARM740T
ARMOTDMI
1998
ARM940T
ARMS9E-S
1999
ARM966E-S
ARM920T
2000 ARM922T ARM1020T
ARM946E-S
2001 ARM7TDMI-S ARM9EJ-S ARM1020E
ARM7EJ-S ARM926EJ-S | ARM1022E
2002 ARM1026EJ-S | ARM1136J(F)-S
ARM1156T2(F)-S
2003 ARM968E-S

ARM1176JZ(F)-S
2004 Cortex-M3

CSUN : . |B8)sorrware
e ARM Cores 7-11 Timeline — iewm

2016-2022
COMP122
2005 ARM11MPCore Cortex-A8
2006 ARM996HS
2007 Cortex-M1 Cortex-A9
2008
2009 Cortex-M0 Cortex-A5
2010 Cortex-M4(F) Cortex-A15
Cortex-R4
2011 Cortex-R5 | Cortex-A7
Cortex-R7
Cortex-A53
2012 Cortex-MO0+
Cortex-A57
2013 Cortex-A12
2014 Cortex-M7(F) Cortex-A17
Cortex-A35
2015
Cortex-A72
Cortex-M23 Cortex-R8
2016 Cortex-A32 | Cortex-A73
Cortex-M33(F) | Cortex-R52
Cortex-A55
2017
Cortex-A75

Cortex-A65AE
2018 Cortex-M35P(F) Cortex-A76
Cortex-A76AE

Neoverse E1
Neoverse N1

2019 Cortex-A77

Cortex-A78

2020 Cortex-M55(F) | Cortex-R82 9
Cortex-X141]

CSUN : : B sorrware
ARM Timeline (v1-7) & e

2016-2022
COMP12?

ISA Core Cores
Architecture ¢ bit- $
width Arm Holdings 5 Third-party $
Armv1 32 ARM1
Armv2 32 | ARM2, Arm250, ARM3 Amber, STORM Open Soft Corel*”]
Armv3 32 ARM6, ARM7
StrongARM, FA526, ZAP Open Source Processor
Armv4 32 Arm8
Core
Armv4T 32 ARM7TDMI, ARM9TDMI, SecurCore SC100
Armv5TE 32 ARM7EJ, ARM9E, ARM10E XScale, FA626TE, Feroceon, PJ1/Mohawk
Armvé 32 ARM11
Arm Cortex-M0, ARM Cortex-MO+,
Armve-M 32
ARM Cortex-M1, SecurCore SC000
Armv7-M 32 Arm Cortex-M3, SecurCore SC300
Armv7E-M 32 Arm Cortex-M4, ARM Cortex-M7
Armv8-M 32 Arm Cortex-M23,[49] Arm Cortex-M33(50]
ARM Cortex-R4, ARM Cortex-R5,
Armv7-R 32
ARM Cortex-R7, ARM Cortex-R8
Armv8-R 32 ARM Cortex-R52
ARM Cortex-A5, ARM Cortex-A7, ARM Cortex-A8, Qualcomm Scorpion/Kralt, PJ4/Sheeva, Apple
Armv7-A 32 | ARM Cortex-A9, ARM Cortex-A12, B - ’ PP
ARM Cortex-A15, ARM Cortex-A17

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARMvS-A

ARMvS.1-A

ARMv8.2-A

ARMv8.3-A

ARMvS.4-A

ARMv8.5-A

ARMvVS8.6-A

32

64/32

64

64/32

64/32

64/32

64

64/32

64/32

ARM Timeline (v8)

ARM Cortex-A32[54]

ARM Cortex-A35,[55] ARM Cortex-A53,
ARM Cortex-A57,[56] ARM Cortex-A72,[57]
ARM Cortex-A73[58]

ARM Cortex-A34[65]
TBA

ARM Cortex-A55,167] ARM Cortex-A75,[68]
ARM Cortex-A76,/%] ARM Cortex-A77,
ARM Cortex-A78, ARM Cortex-X1,

ARM Neoverse N1

ARM Cortex-A65, ARM Neoverse E1 with
simultaneous multithreading (SMT),

ARM Cortex-A65AE!"?! (also having e.g.
ARMv8.4 Dot Product; made for safety critical
tasks such as advanced driver-assistance

systems (ADAS))

TBA

TBA

TBA

TBA

TBA

X-Gene, Nvidia Denver 1/2, Cavium
ThunderX, AMD K12, Apple Cyclone
(A7)/Typhoon (A8, A8X)/Twister (A9,
A9X)/Hurricane+Zephyr (A10, A10X),
Qualcomm Kryo, Samsung M1/M2
("Mongoose") /M3 ("Meerkat")

Cavium ThunderX2

Nvidia Carmel, Samsung M4 ("Cheetah"),
Fujitsu A64FX (ARMv8 SVE 512-bit)

Apple Monsoon+Mistral (A11) (September
2017)

Apple Vortex+Tempest (A12, A12X, A122Z),
Marvell ThunderX3 (v8.3+)74]

Apple Lightning+Thunder (A13)

Apple Firestorm+Icestorm (A14, M1)

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN

@re DR JEFF
r d E SOFTWARE
CALIFORNIA INDIEAPPDEVELOPER
ARM 3 Party SoC
NORTHRIDGE 2016'2022
X-Gene 3 GHz (4.2
(Applied | ARMvS-A X-Gene 64-bit, quad issue, SMP, 64 cores®'] Cache, MMU, virtualization DMIPS/MHz per
Micro) core)
Deitrver 2 cores. AArch64, 7-wide superscalar, in-order, dynamic
(Nvidia) ARMVS8-A Denver!82183] code optimization, 128 MB optimization cache, 128 KB I-cache / 64 KB D-cache Up to 2.5 GHz
‘ ‘ Denver1: 28nm, Denver2:16nm
Carraal 2 cores. AArch64, 10-wide superscalar, in-order, dynamic
(Nvidia) ARMv8.2-A | Carmel®4I8] code optimization, ? MB optimization cache, 7 KB I-cache / ? KB D-cache Up to ? GHz
‘ functional safety, dual execution, parity & ECC
ThunderX 64-bit, with two models with 8-16 or 24—48 cores (x2 w/two
ARMvS-A ThunderX ; ? Up to 2.2 GHz
(Cavium) chips)
K12 | o
ARMv8-A K12[86] ? ? ?
(AMD) |
ARMVE-A M1/M2 4 cores. AArch64, 4-wide, quad-issue, superscalar, out-of- 64 KB |-cache / 32 KB D-cache, L2: 16- 5.1 DMIPSMHz
("Mongoose")(#7] order way shared 2 MB (2.6 GHz)
Exynos : : ' .
. nee | 4cores, AArch64, 6-decode, 6-issue, 6-wide. superscalar, | 64 KB I-cache / 32 KB D-cache, L2: 8-way
(Samsung) ARMv8-A | M3 ("Meerkat") S : ?
‘ ‘ out-of-order private 512 KB, L3: 16-way shared 4 MB
2 cores, AArch64, 6-decode, 6-issue, 6-wide. superscalar, | 64 KB I-cache / 32 KB D-cache, L2: 8-way
ARMv8.2-A | M4 ("Cheetah") ; ?
out-of-order private 512 KB, L3: 16-way shared 4 MB

CSUN)-8 ke
-z ARM SoC — Apple, Qualcomm esisen

2016-2022
- 1 or 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv3 2.1 DMIPS/MHz
Scorpion!?1] o 256 KB L2 per core
FPU / NEON (128-bit wide) per core
ARMv7-A
Kraitl™] 1, 2, or 4 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / 4KB/4KBLO, 16 KB/16 KBL1,512KB | 3.3 DMIPS/MHz
Snapdragon VFPv4 FPU / NEON (128-bit wide) L2 per core per core
(Qualcomm)
Up to 2.2 GHz
ARMvS8-A Kryol72] 4 cores. ? (6.3
DMIPS/MHz)
2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FP 3.5 DMIPS/MHz
ARMV7-A Swift73] i Lo /T2 DBk 3 2 L1: 32 KB/32 KB, L2: 1 MB
/ NEON per core
74 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU
ARMvS8-A Cyclonel74! L1:64 KB /64 KB, L2: 1 MB, L3: 4 MB 1.3 or 1.4 GHz
/ NEON / TrustZone / AArch64. Out-of-order, superscalar.
AY75 2 or 3 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 | L1:64 KB /64 KB, L2: 1 MB or 2 MB, L3:
ARMvS8-A Typhoon!74175] 1.4 or 1.5 GHz
FPU / NEON / TrustZone / AArch64 4 MB
. 76 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU | L1:64 KB/ 64 KB, L2: 2 MB, L3: 4 MB or
ARMVS-A Twister(7€] 1.85 or 2.26 GHz
/ NEON / TrustZone / AArch64 0o MB
: Hurricane: 2 or 3 cores. AArch64, 6-decode, 6-issue, 9-wide,
Hurricane and L1:64 KB/ 64 KB, L2: 3 MB or 8 MB, L3:
ARMvS8.1-A superscalar, out-of-order 2.34 or 2.38 GHz
Zephyrl77] 4 MB or 0 MB
Ax Zephyr: 2 or 3 cores. AArché4.
(Apple) Monsoon: 2 cores. AArch64, 7-decode, 7-issue, 11-wide,
superscalar, out-of-order L11: 128 KB, L1D: 64 KB, L2: 8 MB, L3:
ARMvB.2-A | Monsoon and , ¢ 2.39 GHz
Mistral(78] Mistral: 4 cores. AArch64, out-of-order, superscalar. Based 4 MB
on Swift.
Vortex: 2 or 4 cores. AArch64, 7-decode, 7-issue, 11-wide,
Vortex and superscalar, out-of-order
ARMv8.3-A 79 L1: 128 KB /128 KB, L2: 8 MB, L3: 8 MB 2.5 GHz
Tempest!79] Tempest: 4 cores. AArch64, 3-decode, out-of-order,
superscalar. Based on Swift.
) . Lightning: 2 cores. AArch64, 7-decode, ?-issue, 11-wide,
Lightning and
ARMvS8.4-A 80 superscalar, out-of-order L1: 128 KB /128 KB, L2: 8 MB, L3: 16 MB 2.66 GHz
Thunder!80]

Thunder: 4 cores. AArch64, out-of-order, superscalar. \

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM

@ DR JEFF
Q SOFTWARE

© Jeff Drobman
2016-2022

Cortex-A75

First DynamIQ-based high performance
CPU

e Flexible architecture provides a broad
ecosystem of support

e Executesupto three instructionsin
parallel per clock cycle

e Broad market use covers
smartphones, servers, automotive
applications and more

Cortex-A73

Most power-efficient processor in the
Cortex-A family

e Increased power efficiency of up to 30
percent over predecessors

e Smallest Armv8-A processor

e Designed for mobile and consumer
applications

v

Cortex-A72

Fast processing improves the efficiency of
mobile applications

e Advanced branch predictor reduces
wasted energy consumption

e Gainsignificant advantages in
reduced memory requirements

e Suitable for implementationinan Arm
big.LITTLE configuration

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM

@ DR JEFF
IQ'SOFTWARE

© Jeff Drobman
2016-2022

Features and Benefits

=

High Compute
Density

Gain significant advantages in
reduced memory requirements
and maximizing the use of on-chip
Flash memory with advanced code
density.

Vv
Advanced

Branch
Predictor

Drastically improve prediction
accuracy with a sophisticated new
algorithm, which reduces wasted

energy consumption from

executing down an incorrect code

path.

Infrastructure
Compatibility

Develop more advanced
networking and storage
applications by harnessing the full
error-correcting code cache and
44-bit addressing up to 16TB.

- DR JEFF
CSUN &5 soFTwaRrE
A R |\/| Seesesmi

NORTHRIDGE 2016-2022
COMP122

arm

PFECRNOI@GCIES

ARM BIG.LITTLE

@sa DR JEFF

CSUN 25 soFTWARE

Chronnis A R |V| oesrommoren
NORTHRIDGE

2016-2022
COMP122

Processing Architecture for Power Efficiency
and Performance

Arm big.LITTLE technology is a heterogeneous processing architecture that uses two types of processor. "LITTLE" processors are designed
for maximum power efficiency while "big” processors are designed to provide maximum compute performance. With two dedicated
processors, the big.LITTLE solution is able to adjust to the dynamic usage pattern for smartphones, tablets and other

devices. Big.LITTLE adjusts to periods of high-processing intensity, such as those seen in mobile gaming and web browsing, alternate with

typically longer periods of low-processing intensity tasks such as texting, e-mail and audio, and quiescent periods during complex apps.
The performance demanded from users of current smartphones and tablets is increasing at a much faster rate than the capacity of
batteries or power savings from advances in semiconductor process. At the same time, users are demanding longer battery life within

roughly the same form factor. This conflicting set of demands requires innovations in mobile SoC design beyond what process technology
and traditional power management techniques can deliver.

Armv8

e High-efficiency CPU (LITTLE): Cortex-A53, Cortex-A55

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

ARM

@ DR JEFF
IQ'SOFTWARE

© Jeff Drobman
2016-2022

COMP122
Features and Benefits
Heterogenous Maximum Optimal
Solution Performance Energy-

Arm big.LITTLE processing
takes advantage of
the variation smart
devices requirein

performance by
combining two very
different processors

together in a single SoC.

The big processor is
designed for maximum
performance within the

mobile power budget.

effiency

The smaller processor is
designed
for optimal efficiency and
is capable of addressing
all but the most intense

periods of work.

(@GS DR JEFF
CSUN 85 soFrware
T ARM O et Brobman
NORTHRIDGE

2016-2022
COMP122

Typical Processor Combinations

Arm Cortex-A series processor combinations that meet big.LITTLE requirements are shown below

Armv8

e High-performance CPU (big): Cortex-A73, Cortex-A75, Cortex-A76

e High-efficiency CPU (LITTLE): Cortex-A53, Cortex-A55

@% DR JEFF
CSUN IQI SOFTWARE
CALIFORNIA A R M @INfgf}PEL;-EOVEI;;PaE;
T NORTHRIDGE

2016-2022
COMP122

— 219 & 762
QllOl'a @ = lﬂ? EQ] g Q Search Quora
Yowan Rajcoomar, Computer Technician (2008-present) ®

Answered 7h ago

The 'Efficiency' cores can also be considered as high end since they are superscalar
out of order designs with speculative execution unlike ARM's reference efficiency cores
like the Cortex-A53 and A55.

In fact, they're as complex as ARM's older high end A75 cores. Quoting AnandTech:

What we didn’t cover in more detail in the M1 piece was the new small efficiency
cores. The Icestorm design is actually a quite major leap for Apple as it sees the
introduction of a third integer ALU pipeline, and a full second FP/SIMD pipeline, vastly
increasing the execution capabilities of this core. At this point it would be wrong to
call it a “small” core anymore as it now essentially matches the big core designs
from Arm from a few years ago, being similar in complexity as an A75.

Emphasis mine.

And that's not only it. Apple's efficiency cores also manage to offer performance levels
comparable to ARM's Cortex-A76 while being more efficient than the A55.

DR JEFF
9 SOFTWARE

© Jeff Drobman
2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Architecture

Hennessy & Patterson —

Figure 4.11.1: Specification of the ARM Cortex-A53 and the Intel Core i7

920 (COD Figure 4.72).

Processor
Market Personal Mobile Device Server, Cloud
Thermal design power 100 milliwatts 130 Watts

(1 core @ 1 GHz2)

Clock rate 1.5 GHz 2.66 GHz
Cores/Chip 4 (configurable) 4
Floating point? Yes Yes
Multiple Issue? Dynamic Dynamic
Peak instructions/clock cycle 2 %)
Pipeline Stages 8 14
Pipeline schedule Static In-order Dynamic Out-of-order with Speculation
Branch prediction Hybrid 2-level
1st level caches/core 1664 KiB |, 1664 KiB D 32KiBIl,32KIBD
2nd level cache/core 128-2048 KiB (shared) 256 KiB (per core)
3rd level cache (shared) (platform dependent) 2-8 MiB

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

Hardware-ARM SoC

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

Hennessy & Patterson

COMP122
. . JTAG ARM Voltage "
Scan Processor Regulator |
System Controller
Advanced Int. Ctrl. AR |« > = —
Power Mgt. Ctrl. m::[:: =°|
PLL << g
L Osc o SRAM
RC Osc O
Reset Ctrl. Peripheral ?
Brownout Detect Bridge E
Power On Reset U | Flash
Prog. Int. Timer < » 2
Watchdog Timer :;
41— * | Real Time Timer _ [Peripheral Flash |
D;;"c‘:l“* E | Data Controller| |Programmer [€
< o .| Application-Specific |
| [Ethernet MAC < ¢ > CAN +» ¢
> [USARTO-1 < > |« > USB Device > |<
o) o)
<+ <+ SPI < »>|¢ > PWM Ctrl > — <
o : o,
<+ |[¢» Two Wir Interface |« >|<¢ $| Synchro Serial Ctrl 4| |«
+—r ADCO-7 »>|< TimerCounter 0-2 <

|

- GPIO

Processor
Data Path

Apple ARM A5 12.1x10.2mm
Eiaiyuse oo |

GPIO

Processor
Data Path
2 2

Processor Processor
Data Path Data Path
1 1

p— 0

CPU1 CPU2

Arm Core Arm Core

\‘I .!
__iFi
- _l. m ;b “'. w ..___.l”‘r';‘l‘ b YA

{:1 A BB

DDR SDRM
interface

S DR JEFF
CSUN] Rl
CALIFORNIA INDIE APPDEVELOPER

© Jeff Drob
srATE U vERS Y ARM M S eries eff Drobman

2016-2022
COMP122 -

ARM Cortex-M Product Line

Digital Signal Control
Processor with DSP

Accelerated SIMD

Performance efficiency Floating point

Feature rich connectivity

Lowest power
Outstanding energy efficiency

Lowest cost
Low power

‘8/16-bit’ Traditional application space ‘16/32-bit’ Traditional application space u RM

21

CSUN . D) sorrware
Curoms ARM M Series L ot

2016-2022
COMP122 e

ARM Cortex-M Instruction Set Architecture

CoveMA vems v Cowse vt
NI AT SN Cortex-M4 FPU

Cortex-M4

Cortex-M3

Cortex-M0O/M0+ |

|
ALEEERIAEEERRLE

I%’
:

%’

-MO0/MO+/M1

CSUN .)-8 vane
ARM M Series — MO
COMP122 vicy I

Details on the Plastic MO

In Arm’s press release, the company states that the Plastic MO design has 128 bytes of RAM and 456 bytes
of ROM, while also supporting a 32-bit Arm microarchitecture.

Inside the research paper published at Nature, we get fine-grained details.

The processor is built with a polyimide substrate and is formed through thin-film metal-oxide transistors, such
as IGZO TFTs. This means that this is still technically a photolithography process, using spin-coating and
photoresist techniques, ending up with the processor having 13 material layers and 4 routable metal layers.
However as TFT designs have been widespread since the use of IGZO displays, the cost of production is still
quite low.

......

7.538 mm
9 mm

7.856 mm

9 mm

CSUN

&% DR JEFF
ﬂ SOFTWARE

INDIEAPPDEVELOPER

[
R ARM M Series
NORTHRIDGE

COMP122

2016-2022

MCU —

PlasticArm: the Plastic MO

Process Node

Die Size

Thickness

ISA

Frequency
Power
Pin Count
Material Layers
Routable Metal Layers

Devices

FlexIC 800nm
n-type IGZO TFT NMOS
200nm polyimide wafer
59.2 mm2 (core only) ;
(7.536 mm x 7.856 mm)

under 30 micron

ARMv6-M
16-bit Thumb + subset of 32-bit

20-29 kilohertz
21 milliwatts
28 pins
13 layers
4 layers

56340
39157 n-type TFT + 17183 resistors

CSUN : B34 soFrware
T ARM M Series G it

NORTHRIDGE

COMP122 p—
Thin-film transistor

From Wikipedia, the free encyclopedia

This article is about TFT technology. For thin-film-transistor liquid-crystal display, see TFT LCD.

A thin-film transistor (TFT) is a special type of metal-oxide—semiconductor field-effect transistor
(MOSFET)!'] made by depositing thin films of an active semiconductor layer as well as the dielectric
layer and metallic contacts over a supporting (but non-conducting) substrate. A common substrate is
glass, because the primary application of TFTs is in liquid-crystal displays (LCDs). This differs from
the conventional bulk MOSFET transistor,['! where the semiconductor material typically is the

substrate, such as a silicon wafer. staggered coplanar

- I —gate

& Y source s drain I l
MOSFET 8 g’ channel amorphous substrate
on Glass
or Plastic € o .

£ © ﬁ ﬁ

o O

Q

D e.g. glass D amorphous silicon (a-Si)
|:| e.g. metal [:l insulator/dielectric
. gate material (e.g. ITO)

Several types of TFT constructions.

CSUN : B soFrware
i A5 CPU on iPad2
MP

The logic board of Apple iPad 2 in the previous figure. The photo highlights five integrated circuits. The large integrated circuit in the
middle is the Apple AS chip, which contains dual ARM processor cores that run at 1 GHz as well as 512 MB of main memory inside the
package. The next figure shows a photograph of the processor chip inside the A5 package. The similar-sized chip to the left is the 32GB
flash memory chip for non-volatile storage. There is an empty space between the two chips where a second flash chip can be installed
to double storage capacity of the iPad. The chips to the right of the A5 include power controller and |/0O controller chips. (Courtesy iFixit,

Hennessy & Patterson —

32GB 3548 flash
512MB DRAM A5 spare

HENSIINN

The Apple A5 is a 32-bit system
on a chip (SoC) designed by
Apple Inc. and manufactured by
Samsung. The first product Apple
featured an A5 in was the iPad 2.
Apple claimed during their media
event on March 2, 2011 that the
ARM Cortex-A9 central
processing unit (CPU) in the

&

DR JEFF

CSUN | : &) soFTware
A pple ARM A Series © eff brobman

COMP122

Quora post ‘

According to Apple, the chip is capable of performing one trillion operations per
second and with an eight-core neural engine, A13 Bionic chip has the most
Machine Learning performance that adds 6x faster matrix multiplication.

This time Apple has focused mainly on machine learning and the A13 Bionic has
Fastest CPU and GPU in a Smartphone.

Qualcomm Snapdragon 800 Series flagship is the biggest competitor of Apple.
Qualcomm has its Snapdragon 855 and 855 Plus flagship SoC but the successor
to Snapdragon 855 is yet to get announced were Apple has already unveiled A13
Bionic.

The Apple A13 Bionic is fabricated on TSMC 2nd (EUV Lithography Process)
Generation 7nm process and Snapdragon 855 and 855 Plus Both are fabricated on
TSMC 7nm DUV process. And A13 has over 8.3 Billion Transistors and that of 855
Snapdragon has 6.9 Billion Transistors.

f DR JEFF

CSUN Q SOFTWARE

gpaCALITOBNIA A | e A 1 3 Sl sien
NORTHRIDGE p p 2016‘2022

COMP122

Quora post

Apple A13 Bionic
Top Features

Fastest CPU

Fastest GPU

Faster Neural Engine
ML Controller

ML Accelerators
Core ML 3
8.5 Billion Transistors

In Steve Jobs Studio, Apple launched three new iPhones - iPhone 11, iPhone 11 Pro
and iPhone 11 Pro Max. All these three new iPhones are based on the new Apple
A13 Bionic chipset. The company launched this SoC with these iPhones. The A13
Bionic is a successor of last year's A12 Bionic SoC. The last year's A12 Bionic is
ahead of Snapdragon 855 in terms of performance. According to the company,
Apple A12 Bionic is at least two years ahead of other Android smartphones in the

race for fast processors. After all, what is new in the A13 Bionic that makes iPhones
en novwarfiil? NDan't warry hara we [(mnora)

S| DR JEFF
CSUN &5 soFTwARE
. A p p | e A 1 3 O e Drobman

NORTHRIDGE 2016-2022

COMP122

|
The A13 is a new multi-core architecture designed by Apple with 8.5B transistors manufactured at

TSMC (7nm EUV) -- extremely state-of-the-art. It contains a large number of ARM ISA cores:
8 CPU + 7 GPU + 8 NPU + 2 MCU. All cores are Apple designed (ARM 64-bit v8 ISA is licensed).

It includes a Neural engine (8x NPU) with machine learning (core ML 3 at 6x faster matrix multiply)
— which sets it apart from Intel chips without GPU's or an NPU. The GPU's can perform 1 trillion
operations per second (1 Tflops=1000 Gflops), and the NPU may hit 5 Tflops. It has extreme power
management as well (so good for portables and mobile).

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Apple ARM A12/13 SoC

4

L)

* 8 CPU
* 7 GPU
* 1 NPU
* 2 MCU

AR

L)

CR)

L)

CR)

L)

L)

This is a block diagram of the AppleF12X|with|1O billion transistorsl Of that

amount, only 25% is dedicated to the two CPU clusters:

Tem\pesN Tempest
GPU Core0 GPU Core4 \ CPU CPU
GPU Coret1 GPU Core5
GPU Core2 GPU Core6
GPU Core3 CC Fabric
System Cache
ISP
Video Processor
NPU
Depth Engine
HEVC En/Decoder
Control MCU Always-on MCU | e s‘°’°9°"°r Display Engine
Secure Enclave (SEP) | | Audio Subsystem

Image source: A12X Bionic - Apple - WikiChip

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

CSUN Q SSIBT{EZ;E
e Apple ARM A12/13 SoC — ejesin

COMP122

121

Quora =#| Home % Answer

Eﬁ% Spaces Q NotificatiossB Q Sea

3 Answers
Matthew J. Stott, Senior Systems & Mac Engineer (1996-present) ®
Answered Sep 30

than just the CPU cores. What's changed with thg A13 js even more power
management abilities to shut off unused parts of the A13 but also right down to
individual transistors as well. It is the most advanced power management in use
right now. It is responsible for the excellent battery life of the 11, 11 Pro, 11 Pro Max
iPhones. Yes, they increased the battery capacity a bit at the same time but that is
just improved battery engineering.

Add to Yowan's|A12X|the Image Processing Core, a ine Learning
accelerator cores and a bit less on the GPU with the|A13 Bionic SoC} It is expected

there will be an A13X for upgrade iPad Pros coming soon.

It's called JSOC - System on ChipJIt means the CPU iackage includes a lot more

DR JEFF

T\ pple Al13 v Sna P d ragon 85 ©ef Drobman

COMP122

Quora post

And | think iPhones are going to be more power-efficient than Snapdragon 855
powered Android Phones. If you are asking about CPU, then the A13 Bionic is
based on 64-bit Fusion Architecture. It is a Hexa-Core CPU with 2 Performance
cores and 4 Efficiency cores. And it consumes 40% less power than the A12 Bionic.
Coming to 855 Snapdragon, both Snapdragon 855 and 855 Plus is an ARM 64-bit
SoC with Kryo 485 Octa-Core CPU. And it has Three CPU Clusters: 1 Cortex-A76
Prime Core, 3 Cortex-A76 Performance Cores and 4 Cortex-A55 Efficiency Cores.
From these it seems Snapdragon 855 will definitely be a strong competitor for the
Apple A13 Bionic Chip.

Moreover, while talking about GPU, for Apple, it is an Apple-designed Quad Core
GPU and Snapdragon 855 has Adreno 640 GPU. And | don't think the Snapdragon
will beat the performance of Apple’s A13 bionic chip.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

New ARM Models

@ DR JEFF
IQ'SOFTWARE

© Jeff Drobman
2016-2022

Explore More Mobile Products

Cortex-A

Addresses the

performance, power and

cost requirements across

all smartphone markets.

Mali-GPU

Provides the ultimate user

experience for
entertainment and visual
applications across a wide
range of smartphone

devices.

Ethos-NPU

Enables new features,
enhances user
experiences, and delivers
innovative ML-based
applications on

smartphones.

DR JEFF

CSUN | &) soFTware
New ARM Mo d els © e brobmn

COMP122

New Arm IP Offers the Perfect Balance of

Performance and Efficiency

Our latest mobile solution delivers performance and efficiency gains for new and improved digital immersion experiences in the
5G era.

Cortex-A78

The fourth-generation
premium CPU based on
DynamlQ technology drives
innovation in mobile
computing with up to 20%
performance improvement on

previous device generations.

Mali-G78

Second-generation premium
GPU based on the Mali
Valhall architecture delivers
15% improvements in
performance and efficiency
for graphic-intensive

applications.

Ethos-N78

Second-generation, highly
scalable and efficient
processor pushes the limits of
mobile ML capabilities up to
10 TOPs.

The architecture capabilities of Arm’s new premium IP solution and
ongoing ecosystem support enables the very latest digital immersion
features, including 3D rendering, depth-sensing, foldable and multiple
screens, Al on device, console-like gaming and other digital world apps.

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

COMP122

New ARM Models

@ DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

“Facebook and Arm are
collaborating to expand
one of the most widely-
used machine learning
framework capabilities
beyond the CPU. The
combination of the Arm
compute platform and
PyTorch Mobile enables
exciting new ML
applications in edge

devices.”

Christian Keller, Product

Manager, PyTorch Mobile

“Through our shared
vision, Arm and Crytek
are partnering together
to bring CRYENGINE to
the Android ecosystem

and enable desktop-

class graphics on
mobile. Arm’s new
powerful suite of
premium mobile |P is at
the center of ushering in
a new level of visual
fidelity previously
thought impossible on

edge devices.”

Theodor Mader, Technical
Director CRYENGINE, Crytek

“Arm’s new premium
solution delivers a
performant and power
efficient platform that
will seamlessly enable
millions of Unity
creators to deliver the
next-generation of
connected immersive
experiences that will
shape everyone’s daily

lives.

Ralph Hauwert, VP Research

and Development, Unity

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM u-Arch

@) DR JEFF
|§| SOFTWARE

© Jeff Drobman
2016-2022

Figure 1: Neoverse N1 pipeline

-

Branch

v

Integer Single-Cycle 0

Fetch Decode, - Integer Single-Cycle 1
Rename,
Dispatch
. Integer Single/Multi-Cycle
o
= 2
I = FP/ASIMD 0
_.I FP/ASIMD 1
—p Load/ Store 0
-.I Load/ Store 1
IN ORDER QUT OF ORDER

The execution pipelines support different types of operations, as shown in the following table.

— DR JEFF
CSUN ﬂ SOFTWARE
CALIFORNIA l ! I < l ! h INDIE APPDEVELOPER
TATE UNIVERSITY - © Jeff Drob
* NORTHRIDGE IVI u rC 26(_)f_§6_r2002f;an

COMP122

Table 2: Neoverse N1 operations

Instruction groups Instructions

Branch Branch pOPs

Integer Single-Cycle Integer ALU pOPs

0/1

Integer Single/Multi- Integer shift-ALU, multiply, divide, CRC and sum-of-absolute-

cycle 0/1 differences uOPs

Load/Store Address Load, Store address generation and special memory pOPs

Generation 0/1

FP/ASIMD-0 ASIMD ALU, ASIMD misc, ASIMD integer multiply, FP convert, FP
misc, FP add, FP multiply, FP divide, FP sqrt, crypto uOPs, store data
uOPs

FP/ASIMD-1 ASIMD ALU, ASIMD misc, FP misc, FP add, FP multiply, ASIMD shift
uOPs, store data pOPs, crypto pOPs.

CSUN . . 'S, e IARE
. ARM Licensin g L ot

2016-2022
COMP122

Companies that have developed chips with cores designed by Arm Holdings include Amazon.com's Annapurna Labs subsidiary,'] Analog Devices, Apple,
AppliedMicro (now: MACOM Technology Solutions(#2)), Atmel, Broadcom, Cavium, Cypress Semiconductor, Freescale Semiconductor (now NXP
Semiconductors), Huawei, Intel,[dubious - discuss] Maxim Integrated, Nvidia, NXP, Qualcomm, Renesas, Samsung Electronics, ST Microelectronics, Texas
Instruments and Xilinx.

Built on ARM Cortex Technology licence | edit]

In February 2016, ARM announced the Built on ARM Cortex Technology licence, often shortened to Built on Cortex (BoC) licence. This licence allows companies
to partner with ARM and make modifications to ARM Cortex designs. These design modifications will not be shared with other companies. These semi-custom
core designs also have brand freedom, for example Kryo 280.

Companies that are current licensees of Built on ARM Cortex Technology include Qualcomm.[43]

Architectural licence | edit]

Companies can also obtain an ARM architectural licence for designing their own CPU cores using the ARM instruction sets. These cores must comply fully with
the ARM architecture. Companies that have designed cores that implement an ARM architecture include Apple, AppliedMicro (now: Ampere Computing),
Broadcom, Cavium (now: Marvell), Digital Equipment Corporation, Intel, Nvidia, Qualcomm, Samsung Electronics, Fujitsu and NUVIA Inc.

CSUN . . 'S, e IARE
. ARM Licensin g L ot

2016-2022
COMP122

ARM Flexible Access |edit]

On 16 July 2019, ARM announced ARM Flexible Access. ARM Flexible Access provides unlimited access to included ARM intellectual property (IP) for
development. Per product licence fees are required once customers reaches foundry tapeout or prototyping.[44145]

75% of ARM's most recent IP over the last two years are included in ARM Flexible Access. As of October 2019:

« CPUs: Cortex-A5, Cortex-A7, Cortex-A32, Cortex-A34, Cortex-A35, Cortex-A53, Cortex-R5, Cortex-R8, Cortex-R52, Cortex-M0, Cortex-M0+, Cortex-M3,
Cortex-M4, Cortex-M7, Cortex-M23, Cortex-M33

¢ GPUs: Mali-G52, Mali-G31. Includes Mali Driver Development Kits (DDK).

« Interconnect: CoreLink NIC-400, CoreLink NIC-450, CoreLink CCI-400, CoreLink CCI-500, CoreLink CCI-550, ADB-400 AMBA, XHB-400 AXI-AHB

« System Controllers: CoreLink GIC-400, CoreLink GIC-500, PL192 VIC, BP141 TrustZone Memory Wrapper, CoreLink TZC-400, CoreLink L2C-310, CoreLink
MMU-500, BP140 Memory Interface

« Security IP: CryptoCell-312, CryptoCell-712, TrustZone True Random Number Generator

« Peripheral Controllers: PLO11 UART, PL022 SPI, PL031 RTC

Debug & Trace: CoreSight SoC-400, CoreSight SDC-600, CoreSight STM-500, CoreSight System Trace Macrocell, CoreSight Trace Memory Controller

Design Kits: Corstone-101, Corstone-201

Physical IP: Artisan PIK for Cortex-M33 TSMC 22ULL including memory compilers, logic libraries, GPIOs and documentation

« Tools & Materials: Socrates IP ToolingARM Design Studio, Virtual System Models

« Support: Standard ARM Technical support, ARM online training, maintenance updates, credits towards onsite training and design reviews

@ DR JEFF
CSUN . 23 soFTwARE
ChonI A R |V| |V| 3 | | G P U oesrommoren
NORTHRIDGE 2016—2022

COMP122 —
Mali (GPU)

From Wikipedia, the free encyclopedia

The Mali series of graphics processing units (GPUs) and multimedia processors are semiconductor intellectual property cores produced by ARM Holdings for licensing
in various ASIC designs by ARM partners.

Mali GPUs were developed by Falanx Microsystems A/S, which was a spin-off of a research project from the Norwegian University of Science and Technology.['] Arm
Holdings acquired Falanx Microsystems A/S on June 23, 2006 and renamed the company to Arm Norway.?)

Technical details |edit)

Like other embedded IP cores for 3D rendering acceleration, the Mali GPU does not include display controllers driving monitors, in contrast to common desktop video
cards. Instead, the Mali ARM core is a pure 3D engine that renders graphics into memory and passes the rendered image over to another core to handle display.

ARM does, however, license display controller SIP cores independently of the Mali 3D accelerator SIP block, e.g. Mali DP500, DP550 and DP650.[3!
ARM also supplies tools to help in authoring OpenGL ES shaders named Mali GPU Shader Development Studio and Mali GPU User Interface Engine.

Display controllers such as the ARM HDLCD display controller are available separately.*]

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Mali GPU Timeline

Variants [edit]

The Mali core grew out of the cores previously produced by Falanx and currently constitute:

GPU

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

Core

Micro- Shader Die
Fab clock
Model + archi- Type s Launch date core (n size e $ cache %
tecture count (mm?)
(MHz)
e p | Fxedfunclion | ;05 gipermanent deadind | 4 ? ? N/A
55/110 & pipelinel®!
- 200718! 1 ? ? N/A
200 & ' '
oS 1 2 ? 500 8 KiB
300 28 '
i P ble | 2008 14 2 ? 200-600 b
MP & Utgard!®! .rograme e 28 ‘ KiB
pipelinel”]
Mali-450 2012 1-8 40 . 300750 8-512
MP & 28 ' KiB
o 2015 1-4 40 ? 250-650 | 0 220
MP & 28 ' KiB
Mali- 32
1-4 ? 533

LTGM ol | Midgard

‘28

{

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Mali GPU Timeline

Mali-
G71&

Mali-
G52

Mali-
G72&%

Mali-
G76

Mali-
G57&

Mali-
G77&

Model

Bifrost 2@
gen

Bifrost 3™
gen

Valhall 15t
gen

Micro-
archi-
tecture

Unified shader
model +
Unified
memory +

scalar, clause-
based ISA

Superscalar
engine +
Unified
memory +
simplified
scalar ISA

Type

Q2 2016

Q12018

Q2 2017

Q2 2018

Q2 2019

Q2 2019

Launch date

1-4(20r3
EU per
core)

4-20

7-16

Shader
core
count

16
14
10

16
12
10

12

Fab

(nm)

1.36 mm
2 per
shader
core at
10 nm(#®!

Die size
(mm?)

GPU

546-
1037

850

572-800

600-800

850

Core
clock
rate
(MHz)

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

128—-
2048 KiB

128—-
2048 KiB

512-
4096 KiB

64-512
KiB

512—-
4096 KiB

Max L2
cache
size

CSUN @A) sorrware
prCAomNIA A R |\/| Sremie

2016-2022
COMP122

ARM OS

*** Embedded (RT)
¢ Desktop

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

@ DR JEFF
Q SOFTWARE

INDIEAPPDEVELOPER
— © Jeff Drobman

2016-2022

The 32-bit Arm architecture is supported by a large number of embedded and real-time operating systems, including:

A2 « Pharos!'40]

Android e Plan9

ChibiOS/RT o PikeOS['41]

Deos e QNX

DRYOS e« RIOT

eCOS Android, a popular operating system which &7 > RTEMS

embOS el « RTXC Quadros
FreeRTOS « SCIOPTAl'42]
Integrity e ThreadX

Linux ¢ TizenRT
Micro-Controller Operating Systems e T-Kernel

MQX e VxWorks

Nucleus PLUS ¢ Windows Embedded Compact
NuttX * Windows 10 loT Core
OSE

08'9[1 39]

CSUN : £ sorrware
OS — Mobile g

2016-2022
COMP122

Mobile device operating systems

e Tizen
The 32-bit Arm architecture is the p « Ubuntu Touch
« Android « webOS
e Bada ¢ Windows RT
o BlackBerry OS/BlackBerry 10 « Windows Mobile
e Chrome OS e Windows Phone
e Firefox OS ¢ Windows 10 Mobile
« MeeGo
 Sailfish
e Symbian

Previously, but now discontinued:

¢ IOS 10 and earlier

CSUN Bl sorrware
. OS — Des kt op L ot

2016-2022
COMP122

Desktop/server operating systems | edit]
The 32-bit Arm architecture is supported by RISC OS and by multiple Unix-like operating systems including:

e FreeBSD
e NetBSD
e OpenBSD
« OpenSolaris!!43]
« several Linux distributions, such as:
e Debian
e Armbian
e Gentoo
e Ubuntu
* Raspbian
e Slackware

= DR JEFF
CSUN I ' ISOFTWARE
. A R |\/| L e

2016-2022
COMP122

ISA

se*vs MIPS
**Registers
*Memory

s Instructions

a&r'sl DR JEFF
CSUN E)sorrware
STATE UNIVERSITY VS © Jeff Drobman

2016-2022
COMP122

Hennessy & Patterson

2.16 Real stuff: ARMv7 (32-bit) instructions [Present B Note

ARM is the most popular instruction set architecture for embedded devices, with more than 9 billion devices in 2011 using ARM, and recent
growth has been 2 billion per year. Standing originally for the Acorn RISC Machine, later changed to Advanced RISC Machine, ARM came
out the same year as MIPS and followed similar philosophies. The figure below lists the similarities. The principal difference is that MIPS
has more registers and ARM has more addressing modes.

Figure 2.16.7: Similarities in ARM and MIPS
instruction sets (COD Figure 2.31).

Date announced 1985 1985

Instruction size (bits) 32 32

Address space (size, model) 32 bits, fiat | 32 bits, fiat

Data alignment Aligned ‘ Aligned

Data addressing modes 9 ‘ 3

Integer registers (number, model, size) 15 GPR x 32 bits | 31 GPR x 32 bits
/0 Memory mapped ‘ Memory mapped

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM vs MIPS

Hennessy & Patterson

Figure 2.16.5: ARM arithmetic/logical
instructions not found in MIPS (COD Figure

2.35).

integer sub

OldCarryOut

Load immediate Rd = Imm | | 8ddi $0,

Not . Rd = ~(Rs1) . mvn \ nor $0,

Move Rd = Rs1 mov \ or $0,

— 'Rd=Rsi>> | 1 ror I
Rdg. .1 =RS3 .. m |

And not Rd = Rs1 & ~(Rs2) bic |

Reverse subtract Rd = Rs2 - Rsl rsb, rsc \

Support for multiword . CarryOut, Rd = Rd + Rs1 + | adcs s

integer add OtdCarryOut

Support for multiword | CarryOut, Rd = Rd - Rs1 +

sbes —_

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM vs MIPS

Hennessy & Patterson

@ DR JEFF
Q SOFTWARE

© Jeff Drobman
2016-2022

I Y R TR

addu, addiu
Add (trap if overflow) adds; swivs add
' Subtract sub . subu
Subtract (trap if overflow) subs; swivs sub
Multiply mul mult, multu
Divide —_ div, divu
_ . And and and
Register-register or e =
Xor eor xor
| Load high part register — | lui
Shift left logical Isit sllv, sll
Shift right logical Isrt srlv, srl
Shift right arithmetic asrt srav, sra
Compare cmp, cmn, tst, teq slt/i,slt/iu
Load byte signed Idrsb Ib
Load byte unsigned Idrb Ibu
' Load halfword signed Idrsh . Ih
Load halfword unsigned Idrh lhu
Load word Idr Iw
Datatransfer giore byte strb sb
Store halfword strh sh
Store word str SW
Read, write special registers mrs, msr move
' Atomic Exchange swp, swpb | I:sc

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM vs MIPS

Hennessy & Patterson

Figure 2.16.4: Instruction formats, ARM and MIPS (COD Figure 2.34).

The differences result from whether the architecture has 16 or 32 registers.

Register-register

Data transfer

Branch

Jump/Call

ARM

MIPS

ARM

MIPS

ARM

MIPS

ARM

MIPS

31 28 27 20 19 16 15 12 1 4 3 0
I |
N 26 25 21 20 16 15 11 10 65 0

Rs1® Rs2* Rd"

N 28 27 20 19 16 15 12 1 0
T T T —
3 26 25 21 20 16 15 0

Rs1® Rd*

o I

3 28 27 24 23

o

3 26 25 21 20 16 15

Rs1” 52"

o

31 28 27 24 23

o

31 26 25

| W Opcode [Register @ Constant |

Dr Jeff

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

DR JEFF
CSUN E SOFTWARE
prChron A R |V| V8 oesrommoren
NORTHRIDGE

2016-2022
COMP122

Hennessy & Patterson —

2.18 Real stuff: The rest of the ARMvS8 instruction
set

] Present B Note

Of the many potential problems in an instruction set, the one that is almost impossible to overcome is having too small a memory address.
While the x86 was successfully extended first to 32-bit addresses and then later to 64-bit addresses, many of its brethren were left behind.
For example, the 16-bit address MOStek 6502 powered the Apple Il, but even given this headstart with the first commercially successful
personal computer, its lack of address bits condemned it to the dustbin of history.

ARM architects could see the writing on the wall of their 32-bit address computer, and began design of the 64-bit address version of ARM in
2007. It was finally revealed in 2013. Rather than some minor cosmetic changes to make all the registers 64 bits wide, which is basically
what happened to the x86, ARM did a complete overhaul. The good news is that if you know MIPS it will be very easy to pick up ARMvS, as
the 64-bit version is called.

First, as compared to MIPS, ARM dropped virtually all of the unusual features of v7:

= There is no conditional execution field, as there was in nearly every instruction in v7.

= The immediate field is simply a 12 bit constant, rather than essentially an input to a function that produces a constant as in v7.
= ARM dropped Load Multiple and Store Multiple instructions.

= The PC is no longer one of the registers, which resulted in unexpected branches if you wrote to it.

Second, ARM added missing features that are useful in MIPS:

= V8 has 32 general-purpose registers, which compiler writers surely love. Like MIPS, one register is hardwired to 0, although in load and
store instructions it instead refers to the stack pointer.

= |ts addressing modes work for all word sizes in ARMv8, which was not the case in ARMv7.

= |tincludes a divide instruction, which was omitted from ARMv7.

= |t adds the equivalent of MIPS branch if equal and branch if not equal.

@ DR JEFF
Q SOFTWARE
A R |V| o i

2016-2022
ARMv?7 -

CSUN
COMP122
Cortex-M ISA
Registers
SP
LR
PC

RO
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

Sixteen generic 32-bit registers

~ Thirteen are for general purposes
» Can hold data or address
» Data may be byte, halfword, or word
- Three have a special purpose

» R13 is the stack pointer
- R14 is the link register
- R15 is the program counter

)1: ARM Cortex-M Instruction Set Architecture

2 DR JEFF
CSUN : 8 sorrware
STATE UNIVERSITY R e g I St e rS © Jeff Drobman

2016-2022
COMP122

Hennessy & Patterson ARMvV8

Register Preserved

X0-X7 Arguments/Results no
X8 8 Indirect result location register no
X9-X15 9-15 Temporaries no

16 May be used by linker as a scratch. register,; Za
X16 (IPO) other times used as temporary register

17 May be used by linker as a scratch register; s
X17 (IP1) other times used as temporary register

18 Platform regigster for platform indgpendent e
X18 code; otherwise a temporary register
X19-X27 19-27 Saved yes
X28 (SP) 28 Stack Pointer yes
X29 (FP) 29 Frame Pointer yes
X30 (LR) 30 Link Register (return address) yes
XZR 31 The constant value O n.a.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

(s |k
Status & Control Syt

2016-2022
CPSR

Flags

The Current Program Status Register (CPSR) has the following 32 bits.

«M

(bits 0—4) is the processor mode bits.

o T (bit 5) is the Thumb state bit.

« F (bit 6) is the FIQ disable bit.
« | (bit 7) is the IRQ disable bit.
« A (bit 8) is the imprecise data abort disable bit.

.I E (bit 9) is the data endianness bit.l

o IT

(bits 10-15 and 25-26) is the if-then state bits.

-l GE (bits 16—19I is the greater-than-or-equal-to bits.

« DNM (bits 20-23) is the do not modify bits.

o J(

bit 24) is the Java state bit.

(bit 27) is the sticky overflow bit}

qQ

V
c
Z|

bit 28) is the overflow bit.

(bit 29) is the carry/borrow/extend bit.
bit 30) is the zero bit.

(bit 31) is the negative/less than bit.

Instruction Formats

2016-2022
COMP122 Hennessy & Patterson ARMv8

LEGvS fields
R-type
|_ opcode || Rm | shamt | Rn | Rd |
11 bits 5 bits 6 bits 5 bits 5 bits
R1 Rd
D-type AW
opcode | address ! op2 Rn | Rt \

11 bits 9 bits 2 bits 5 bits 5 bits

» MIPS opcode = 6/12

e opcode : Basic operation of the instruction, and this abbreviation is its traditional name.

¢ Rm: The second register source operand.

e shamt: Shift amount. (COD Section 2.6 (Logical operations) explains shift instructions ¢
hence the field contains zero in this section.)

¢ Rn: The first register source operand.

¢ Rd: The register destination operand. It gets the result of the operation.

Instruction Encoding

2016-2022
COMP122

Hennessy & Patterson ARMVvVS8

2.5.1: Example of translating a LEGv8 assembly instruction into a machine
instruction.

ﬂ 2x speed

ADD X9, X20, X21

1112 21 0 20 9

10001011000 10101 000000 10100 01001
11 bits 5 bits 6 bits 5 bits 5 bits

. . SOFTWARE
Instruction Encoding & e

2016-2022
COMP122

CS-UN @ DR JEFF

PARTICIPATION

. Hennessy & Patterson ARMv8
I R ‘ 2.5.6: LEGv8 R-type, I-type, and D-type instruction encoding (COD Figure 2.5).

I:I 2x speed

: Bm shamt (R-type
Instruction formats ey
immediate (I-type)
Instruction Format opcode Rn Rd/Rt
address op2 (D-type)
ADD (add) R 112 reg 0 req reg
SUB (subtract) R 1624 reg reg reg
ADDI (add immediate) l 580 constant reg reg
SUBI (sub immediate) | 836 constant reg reg
LDUR (load register) D 1986 address 0 reg reg
STUR (store register) D 1984 address 0 reg reg

Sample instructions

opcode Rm shamt Rn Rd

ADD X1, X2, X3 1112 3 0 2 1
SUB X1, X2, X3 1624 3 0 2 1
opcode immediate Rn Rd

ADDI X1, X2, #100 580 100 2 1
SUBI X1, X2, #1100 836 100 2 1
opcode address op2 Rn Rt

LDUR X1, [X2, #100] 1986 100 0 1
STUR X1, [X2, #100] 1984 100 0 2 1

CSUN . (5 B
Addressing Modes

COMP122

Hennessy & Patterson

Figure 2.16.3: Summary of data addressing modes (COD Figure 2.33).

ARM has separate register indirect and register + offset addressing modes, rather than just putting 0 in the offset of the latter mode. To
get greater addressing range, ARM shifts the offset left 1 or 2 bits if the data size is halfword or word.

Register operand

Immediate operand

X | X | X

Register + offset (displacement or based)

Register + register (indexed)

Register + scaled register (scaled)

'Register + offset and update register
Register + register and update register

Autoincrement, autodecrement

s | 2| 2| 3| 3| 3| | x| x

VPC-i'elétwive déta

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

a DR JEFF
SOFTWARE

—— INDIEAPPDEVELOPER
© Jeff Drobman

2016-2022

Cortex-M Memory

Memory Space

FFFFFFFF
Vendor =

Specific
External
Device
External
Device
External
RAM

External
RAM

Peripheral
SRAM
Code
—

0x00000000

- 32-bit addresses support 4 GiB memory space
- Code, data, and I/O share same memory space
- Data types are bytes, halfwords, and words

- Memory addresses are byte addresses
- Predefined regions have distinct characteristics

- Executable

@ DR JEFF
CSUN 23 soFTwARE
ChonI A R |V| oesrronmomn
NORTHRIDGE

2016-2022
COMP122

Cortex-M Memory
On-chip Memory Space

OXSFFFFFFF
Peripheral

8:‘;??2222‘3 ~ On-chip code, data, and |/O are located in the first
1.5 GiB of memory space

SRAM - Each is allocated 0.5 GiB

8&222?222 - May use physically separate buses for each space

Code

0x00000000

CSUN (s |Peyatetd
Q SOFTWARE
INDIEAPPDEVELOPER
ChonI A R |V| oesrronmomn
NORTHRIDGE 2016‘2022

COMP122

Cortex-M Memory

Private Memory Space

OxFFFFFFFF

Private Peripheral Bus occupies 1 MiB space
Registers that control peripherals that are a mandatory
part of the Cortex-M architecture are mapped here.

- Nested Vectored Interrupt Controller (NVIC)

- System Tick Timer (SysTick)

- Fault status and control

Vendor
Specific

Processor debugging

0xEO0100000
pn'vate OxEOOFFFFF

Peripherals 0xE0000000

_N\as

=@ DR JEFF
CSUN I ISOFTWARE
st A R |\/| St

2016-2022
COMP122

arm

PRODUCTS

DEVELOPMENTTOO
SOFTWARE...<_.<i

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

@ DR JEFF
23 soFTwARE

INDIEAPPDEVELOPER

A R IVI © Jeff Drobman
2016-2022
Get Arm Compiler
Access Arm Compiler in the software that is right for you.
MDK Arm Development Studio AC for FuSa

Ideal for

Target devices

Host platforms

Safety qualification
kit

Projects on microcontrollers

Arm Cortex-M*

Windows

Yes, in MDK-Pro

Projects on any Arm
architecture-based SoC

All Arm cores*

Windows, Linux

Stable branch of compiler
standalone for functional
safety applications

All Arm cores™**

Windows, Linux

Yes

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM

gra DR JEFF
Q SOFTWARE

© Jeff Drobman
2016-2022

Keil MDK

Software development package for Arm-
based microcontrollers

e |DE, compiler, debugger, middleware
e Large database of supported devices

e Includes high performing Arm
Compiler

Arm Development
Studio

Software development tool suite for any
Arm-based project

e Code,reuse, build, debug, optimize,
deploy

e Supports custom SoCs, virtual
prototypes and over 5,000 MCUs

e Includes Arm Keil MDK

Compiler

Embedded C/C++ toolchain, from Armvé
M to Armv8-A 64-bit

e Optimized for real-world
e Small & architecturally accurate

e Qualified for functional safety

CSUN R sor AR
25| soFTwaRE
ChonI A R |V| oesrronmomn
NORTHRIDGE

2016-2022
COMP122

| ARM Product Downloads [>Z KEIL

Tools by ARM

Home Products Download Events Support Search Keil.com for —

Latest Versions

| Download the latest Keil software products

¥ MDK-AR! =l C51

Version 4.60 (September 2012) Version 9.508 (June 2012)
Development environment for Cortex and ARM devices. v Development tools for all 8051 devices.

ARM Embedded Development Tools [>7 KEIL

Tools by ARM

Home Products Download Evenls Support Videos

Product Information “ The Keil products from ARM Iinclude C/C++ compilers, debuggers, integrated
Product Overview environments, RTOS, simulation models, and evaluation boards for ARM, Cortex-
Supported Microcontroliers = M, Cortex-R, 8051, C166, and 251 processor families.
Shows and Semunars

Technical Support This web site provides information about the embedded development tools,
Support Knowledgebase product updates, downloads, application notes, example code, and technical support available from
Application Notes Keil.
Nueriimainn Corown

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Lab

(=)

ARMsiim

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN : B soFrware
T ARM Sim O eff Brobman

2016-2022
COMP122

tinyurl.com/armsimcsun

a5 About ARMSIim# - | X
ARMSIm - the ARM Simulator

ARMSim# Version 2.0.1 (2)|

University of Victoria

Produced by:

Dr. Nigel Horspool

Dale Lyons

Dr. Micaela Serra

Bill Bird

Department of Computer Science.

Copyright 2006--2015 University of Victoria.

éimulaﬁn 1 ARMvS ihstruction architecture with Vector
Floating P apport and a Data/Instruction Cache
simulation.

AAAAAAAAAAA
STATE UNIVERSITY

COMP12

| DR JEFF
SOFTWARE

L] @ INDIE APPDEVELOPER
I m © Jeff Drobman
2016-2022

tinyurl.com/armsimcsun

ARMSIm# version for Windows

The files and installation instructions for use on Windows are provided here.

ARMSim# version 2.1 for Linux

The files and installation instructions for use on Linux are provided here.

ARMSim# version 2.1 for Mac OS X

The files and installation instructions for use on Mac OS X are provided here.

(@SR DR JEFF

CSUN . IQ' SOFTWARE
POl TS R r r l © Jeff Drobman
NORTHRIDGE A IVI SI eff Drobman

2016-2022
COMP122

Assembly Manual

Table of Contents Using as

e 1 Overview

1.1 Structure of this Manual

1.2 The GNU Assembler

1.3 Object File Formats

1.4 Command Line

1.5 Input Files

1.6 Output (Object) File

1.7 Error and Warning Messages

e 2 Command-Line Options

2.1 Enable Listings: -a[cdghlns]

2.2 —-—alternate

23 -p

2.4 Work Faster: -f

2.5 .include Search Path: -1 path

2.6 Difference Tables: -k

2.7 Include Local Symbols: -L

2.8 Configuring listing output: —--1isting

2.9 Assemble in MRI Compatibility Mode: -M
2.10 Dependency Tracking: --MD e 3 Syntax

2.11 Output Section Padding ;
2.12 Name the Object File: —o 3.1 Preprocessing
: 3.2 Whitespace

o
2.13 Join Data and Text Sections: -R o
2.14 Display Assembly Statistics: --statistics o 3.3 Comments
o
o

(o}

© 0 0 0 ©

o]

(o}

2.15 Compatible Output: —-traditional-format 34 Symbols

2.16 Announce Version: -v 3.5 Statements
2.17 Control Warnings: -w, --warn, --no-warn, --fatal-warnings

2.18 Generate Object File in Spite of Errors: -z

© 00000 0 0CO0C O OO0OO0OO0OO0O OO O°

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Sim

Dr Jeff

) ARMSim# - The ARM Simulator Dept. of Computer Science

O X
File View Cache Debug Watch Help
i6=(Em » m|a
i CodeView v X |
General Purpose Fioating Point &
| Hexadecmal | z
 Unsonedosamal -
| Signed Decinal |
_/ OutputView | WatchView | v X
Console

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

ARM Sim

= DR JEFF
25| soFTwaRE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

Register View —

ARMSim# User Guide

COMP122
[Hexadecimal
Unsigned Decimal

1] Signed Decimal
RO SEffLfEfEf

FR1 -00001240
R2 00001246
R3 00000000

~ 200000048
RS 00000000
R6 00000000
R7 00000000
RS 00000000
R9 00000000
R10 (s1) :00000000

[« fp) :000053F
R12 (ip) : 00000000

C sp) :000053d8

R14 (1x) :00000000
c) :0000101c¢

Use these buttons to switch Registers R10-R15 are also labelled:

between the Hexadecimal,
€ Unsigned Decimal and Table 3.
I Signed Decimal display —
L modes R10 sl stack limit
R11 |fp frame pointer
Registers that were R12 ki intr P Al scratch
written to during the B e .a-tproce PR RS
execution of the last it
instruction (or R13 |sp stack pointer
sequence of instruc-
tions) R14 |Ir link register
R15 |pc program counter

CPSR Registerxr
" Negative (N) :

0
Zero (2) :0
Carry (C) :0 Condition
Overflow(V) :0 -@ Cm(; Fl
IRQ Disable:1l oae riags
FIQ Disable:1l
CPU Mode :System
_____________ CPSR (Current Program
0x000000df Status Register)

Figure 4. General Purpose Registers View.

CSUN : B soFrware
T ARM Sim O eff Brobman

2016-2022
COMP122 Syscall <-> SWI ARMSim# User Guide

8. SWI Codes for I/O in ARMSim#: the first Plug-in

Plug-ins have been used to extend the functionality of ARMSim# in a modular fashion. A full descrip-
tion of the Plug-in designs is beyond the scope of this document. The default installation of ARMSim#
comes with two Plug-ins module extensions: SWlInstructions and EmbestBoard. The SWlInstructions
plug-in implements SWI codes to extend the functionality of ARMSim# for common I/O operations and
its use is detailed in this section. Important Note: All Plug-ins have to be enabled explicitly by checking their
option in the File > Preferences menu and selecting the appropriate line from within the tab labelled Plugins.

8.1 Basic SWI Operations for I/O

The SWI codes numbered in the range 0 to 255 inclusive are reserved for basic instructions that ARM-
Sim# needs for I/O and should not be altered. Their list is shown in Table 4 and examples of their use fol-
low. The use of “EQU” is strongly advised to substitute the actual numerical code values. The right hand
column shows the EQU patterns used thoughout this document in the examples.

CSUN

CALIFORNIA

¥m DR JEFF
25| soFTwaRE

INDIEAPPDEVELOPER

STATE UNIVERSITY A R IVI S I I I l © Jeff Drobman
NORTHRIDGE . 2016-2022
COMP122 . .
Syscall <-> SWI ARMSim# User Guide
Table 4. SWI I/O operations (0x00 - 0xFF)
Opcode |Description and Action Inputs Outputs EQU
swi 0x00 |Display Character on (r0: the character SWI PrChr
Stdout
swi 0x02 |Display String on \ r0: address of anull ter- |(see also 0x69
Stdout minated ASCII string below)
swi 0x11 |Halt Execution I SWI_Exit
swi 0x12 |Allocate Block of Mem- |r0: block size in bytes r0:address of block |[SWI MeAlloc
ory on Heap
swi 0x13 |Deallocate All Heap SWI DAlloc
Blocks B
swi 0x66 Open File 10: file name, i.e. address of |r0:file handle SWI Open
(mode values inrl are: 0 |a null terminated ASCII If the file does not
for input, 1 for output, 2 |string containing the name |open, a result of -1
for appending) rl: mode is returned
swi 0x68 |Close File 10: file handle SWI Close
swi 0x69 |Write String to a File or |r0: file handleor Stdout SWI PrStr
to Stdout rl: address of a null termi-
nated ASCII string

S DR JEFF
CSUN . SOFTWARE
CALIFORNIA INDIE APPDEVELOPER
UNIV Y © Jeff Drob
ARM Sim Jff Drobmar

COMP122 Breakpoint ___ A RMSim# User Guide
To set a breakpoint, double-click the line of code, at which the br ively,

step through the code to the line, at which the breakpoint should be set and then select Debug > Toggle
Breakpoint. When the breakpoint is set, a large red dot appears in the Code View next to the address of
the instruction at which the breakpoint was set.

To clear a breakpoint, double-click the line of code, at which the breakpoint is set. Alternatively, step
through the code to the line, at which the breakpoint is set, and then select Debug > Toggle Breakpoint.
To clear all of the breakpoints in a program, select Debug > Clear All Breakpoints.

Note:
¢ Clear All Breakpoints clears the breakpoints in 4ll files that are currently open.

ReverseCopy.s

00001020:E59F3028

When the program is run, execution stops
just before execution of the instruction
here the breakpoint is set

DR JEFF

CSUN . 25 soFTwARE
~ - INDIEAPPDEVELOPER

ChonNIy A R |\/| S m oesrronmomn
NORTHRIDGE 2016—2022

cOMp122 ARMSim¢# User Guide |
10.4 ARM Parameter Passing Conventions

The Gnu C compiler gcc can translate a function into code which conforms to the ARM procedure call
standard (or APCS for short), when given the appropriate command-line options.

The APCS rules are as follows:

¢ The first four arguments are passed in R0, R1, R2 and R3 respectively. (If there are fewer argu-
ments then only the first few of these registers are used.) Thus: parameter 1 always goes in R0,
parameter 2 always goes in R1, parameter 3 always goes in R2, parameter 4 always goes in R3.

¢ Any additional arguments are pushed onto the stack.

* The return value always goes in RO0.

e The function is free to destroy the contents of R0-R3 and R12 (used as “scratch”). That is, the
called function can use these registers for computations and does not restore their original values

when the function exits.
¢ The function must preserve the contents of all other registers (excluding PC of course).

** MIPS = Sa0-3 = Sv0-1
** ARM =R0-3 =2 RO

; \ DR JEFF
CSUN . 25| soFTwWARE
. A R |V| S m Jepaian
NORTHRIDGE 2016-2022
COMP122 i i
Watch ARMSim# User Guide
AddWatch (= 18)1X]

Files Labels

SubStringSearchS. s digits Display As Integer Format

dquote

Foundhsg

NotFoundMsg (" Byte
space ~ .
STRING C Halfword Unsigned

(* Signed

StringMsg
SUBSTRING
Substringh sg * Word Base

" Character (¢ Decimal

" Shing " Hexadecimal

Cancel

Watchyiew

Lab¥ Value

tens 1000000000

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Sim

Stack

StackView

B X

000053B0O:
000053B4:
: 00000000

00005388

000053BC:
000053CO:
: 00001246

000053C4

000053C8:
000053CC:
:000053F0
000053D4:
000053D8:
: 00001246

000053D0

000053DC

000053E0:
000053E4:
: 00000000

000053ES8

000053EC:
000053F0:

000053F4

00005404:
00005408:
0000540C:

00000000
00000000

00000000
00001240

00000000
00000048

000010AC
00001240

00001240
00001246

00000000
00000000

: 00001010

000000‘-

0000006G&— FP ™

ARMSim# User Guide

Top of the Stack

Ja- SP

. IStack

Frame

| Value

Memory Address

= DR JEFF
254 soFTwARE

© Jeff Drobman

2016-2022

CSUN : B soFrware
ARM Sim o

2016-2022
COMP122 Cache ——— ARMSim# User Guide

x|

B Preferencesform

General | Main Memory Cache

F Unified Data and Instruction Cache?
nstruction Coache
~
Cache Size Assooininvty Heplacament Sirateqy

of Block ofil ! i t Blocks Fer Set -

164 de Hla = ereey 1 2 S

Cache
¥ Enabled
Cache Size Associstivity Replacement Strategy
Cache Size(Bytes) Block Size(Byles) Number of Blocks Fully Associstive(1 Set) Blocks Per Set Random

1 6 x T Set Associsiive 1 -
- . . * Round Robin
* Direct Mapped

1256 3.

Whrite Folicy Allocate Policy
& Write Through Reod Allocote
~ Both

Restore Defaults | CacheWizerd |

Cancel OK I

Figure 12. Cache Preferences Form.

CSUN

CALIFORNIA
STATE UNIVERSITY

NORTHRIDG

E

COMP122

ARM Sim

Cache

@ DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

it ARMSim# User Guide

UnifiedCacheYi

iew

00001000:

redddEds

e59f003c
2777722727

£5900000
277777

£59F 1035
77772777

€5911000
2777777

B X

| Cache Set

00001010: e59f4034 e2405001 e3a06004 e0224695
W IR WM NN NI
r(oooowzo, (559f3028 e2500001 4a000004 e2511001 ja— |Cache Block
| 7 Tremee—auy v
[00001030; 42000002 4124004 e4834004 eaffFira Memory Address
RN I MWW NN NI
5~
00001040: ef000011 00001054 00001058 EIDIZIDIIZISC]<—-CaC,he block that was written t
707070701 PITITII | 77979777 1970707 19272777 ‘,i“""g ﬂfe execution of the last
instruction (or sequence of
00001050: 00001068 0O0OODD3 00000003 00000001 instructions)
WU MWW NNWN NN NN
d'-oooowso- 00000002 00000003 00000003 00000000 | Dirty Block
[7o woemersr vnemere qoenenn i
27277077 WV MW NN N
W IR MMM NN NI

Figure 13. Cache View.

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

COMP122

ARM

ARM Assembly

DR JEFF
SOFTWARE
© Jeff Drobman

2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

ALU

(=)

ARM Book —

ARM CPU

e R e L T A e N e W) '
| '
: B bus : Data out
l I l '
| '
| '
| '
' | Registers Multiplier Shifter | 1
! :
| '
: A bus :
| '
I '
S l |
l B ;
: ALU :
| '
: ! Datain
| ALU bus ['
I !
: Program counter bus :
I l
| '
| ' '
| |
: Ad(!ress : Address bus &
i register h
I '
| l ;
| '
: Incrementer bus :
' l
| '

FIGURE 3.1 The ARM processor architecture.

Memory
and
/O devices

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN D) sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122

Registers ARM Book —

r0 3.2 ARM User Registers
rl

r2

r3

r4

rd

6 Thirteen general-purpose registers (r0-r12)

r7

r8

r9

rl0

rll (fp)
r12 (ip)
rl3 (sp)
rl4 (Ir)
rl5 (pc)

The stack pointer (r13 or sp)

The link register (r14 or 1r)

The program counter (r15 or pc)

Current Program Status Register (CPSR)

CPSR

FIGURE 3.2 The ARM user program registers.

CSUN B8 ke
ARM Assembly

COMP122
PSR: flags ARM Book —
31 30 29 38 27 ;5_2_5 24 23-—-22_‘21-?0 19 18 17 16 [5_1-4-1:3_1?_11_")- $°80-F .0 . 4 & 310
Niz|c|v|Q] |J] GEBo) | EIA[I|F|T| M40

FIGURE 3.3 The ARM process status register.
Negative: This bit is set to one if the signed result of an operation is negative, and set to zero
if the result is positive or zero.

Zero: This bit is set to one if the result of an operation is zero, and set to zero if the result is

non-zero.

Carry: This bit is set to one if an add operation results in a carry out of the most significant
bit, or if a subtract operation results in a borrow. For shift operations, this flag is set to the last
bit shifted out by the shifter.

oVerflow: For addition and subtraction, this flag is set if a signed overflow occurred.

CSUN 8 sorrware
sATE UNIVERSITY ARM AS sém b Iy ©ef Drobman
COMP122 Macros ARM Book ——

2.3.7 MACROS

The directives .macro and .endm allow the programmer to define macros that the assembler
expands to generate assembly code. The GNU assembler supports simple macros. Some oth-

er assemblers have much more powerful macro capabilities.

| macro SHIFT a.b
A\ <0
mov \a. \a. asr #-\b

.Macro macname macargs .. . else
mov \a, \a, Is] #\b

.Macro macname

Lendm

After that definition, the following code:

SHIFT rd, -6

will generate these instructions:

moy rd, rd4, 1s] #6

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

compP122 ARM v7 ISA

ARM Assembly

¥m DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

Load/store:

LDR (b, h, w)

STR (b, h, w)

LDM{IA} [load multiple]
STM [store multiple]
SWP ((b, w) [swap]

ARM Ref

PUSH/POP
. B

ARM Instruction Set H S

Quick Reference Card | |

Single data item loads and stores | § |Assembler |

Load Immediate offset <op>{size}{T) R4, [Rn {, #<offset>}](!)

or ::’O':y‘ Post-indexed, immediate <op>{size}{T) R4, [Rn), #<offset>

woraq, e o . : a0

i Ratharara Regna.ler offset . <op>{size} R4, [Rn, +/-Rm {, <opsh>}](!}
Post-indexed, register <op>{(size}{(T} R4, (Rn), +/-Rm {, <opsh>}
PC-relative <op>{size} Rd, <label>

Load multiple |Block data load
return (and exchange)
and restore CPSR
User mode reeisters

LDM(IA|IB|DA|DB} Rn{!}, <reglist-PC>
LDM{IA|IB|DA|DB} Rn{!}, <reglist+PC>
LDM(IA|IB|DA|DB} Rn(!}, <reglist+PC>"
LDM{IA|IBIDAIDB} Rn. <realist-PC>"

| Push |

| PUSH <reglist>

Pop

POP <reglist>

@R DR JEFF
CSUN 854 soFTwaRe
s, ARM Assemb |y Ot ronman
NORTHRIDGE 2016‘2022
COMP122
Load/Store ARM Book ——
The load and store instructions allow the programmer to move data from memory to regis-

ters or from registers to memory. The load/store instructions can be grouped into the follow-

ing types:

¢ The optional <size> is one of:

* single register, :
b unsigned byte

* multiple register, and h unsigned half-word

¢ atomic. sb signed byte

sh signed half-word

3.4.2 LOAD/STORE SINGLE REGISTER

These instructions transfer a single word, half-word, or byte from a register to memory or
from memory to a register:

Syntax

ldr Load Register, and
<op>{<cond>}{<size>} Rd, <address>

str Store Register.

CSUN &) sorware
CALIFORNIA INDIEAPPDEVELOPER
soaT UV R ARM AS séem b Iy ©ef Drobman

COMP122 Load/Store ARM Book ——
Table 3.4
ARM addressing modes
Syntax Name
[Rn, #+<offset_12>] Immediate offset

[Rn, *Rm, <shift_op> #<shift>] | Scaled register offset

[Rn, #*<offset_12>]! Immediate pre-indexed

[Rn, *Rm, <shift_op> #<shift=>]!| Scaled register pre-indexed

[Rn], #+<offset 12> Immediate post-indexed

[Rn], *Rm, <shift_op> #<shift> [Scaled register post-indexed

CSUN &) sorware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 Load/Store ARM Book ——

Register immediate: [Rn]
When using immediate offset mode with an offset of zero, the comma and offset can be omit-
ted. That is, [Rn] is just shorthand notation for [Rn, #9]. This shorthand is referred to as reg-

ister immediate mode. For example, the following line of code:

Tdr r3eeinZl

Idr

Immediate offset: [Rn, #+< offset_12 >]
The immediate offset (which may be positive or negative) is added to the contents of Rn. The
result is used as the address of the item to be loaded or stored. For example, the following

line of code:

ldrord,. Lril; #¥12]

CSUN Bl sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 Load/Store ARM Book ——

Register offset: [Rn, *Rm]
When using scaled register offset mode with a shift amount of zero, the comma and shift
specification can be omitted. That is, [Rn, *Rm] is just shorthand notation for [Rn, #*Rm, sl

#0]. This shorthand is referred to as register offset mode.

Offsets to Eff. Address

Scaled register offset: [Rn, *Rm, < shift_op > #<shift>]
rRm is shifted as specified, then added to or subtracted from Rn. The result is used as the ad-

dress of the item to be loaded or stored. For example,

AR rZeerly Isle#2]

May be shifted (scaled)

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

/ DR JEFF
254 soFTwaRE

© Jeff Drobman
2016-2022

Load/Store ARM Book ——
Operations
Name Effect Description
ldr | Rd <= Mem[address] | Load register from memory at address
str | Mem[address] <— Rd | Store register in memory at address
Examples

idrh -

(r2. #2)!

> 2 0 80 ®®

®

store t

Load

the

stord

ad

dress (rd +

the address

ir

r9 with half-word at

CSUN B sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 Load/Store ARM Book ——

Table 3.3

Legal and illegal values for #<immediate—symbol>

#32 Ok because it can be stored as an 8-bit value

#1021 [llegal because the number cannot be created from an 8-bit value using

shift or rotate and complement

#1024 Ok because it is 1 shifted left 10 bits
#0b1011 Ok because it fits in 8 bits
#-1 Ok because it is the one’s complement of 0

#0xFFFFFFFE | Ok because it is the one’s complement of 1

#oxeFFFFFFF | Ok because it is the one’s complement of 1 shifted left 31 bits

#strsize Ok if the value of strsize can be created from an 8-bit value using shift or

rotate and complement

CSUN B sorrware
ARM Assembly
COMP122 LDR ARM Ref ———

LDR (register offset)
Load with register oflset, pre-indexed register oflsel, or post-indexed regaster offset.

Syntax
LDR{ type}{cond) Rt, [Rn, +Rm» {, shift)] ; register offset

LOR{ type}{cond} Rt, [Rn, tRo {, shift}]! ; pre-indexed ; A32 only

LOR{ type}{cond) Rt, [Rn), =Rm {, shift} ; post-indexed ; A32 only
LORD{cond} Rt, Rt2, [Rn, tRo] ; register offset, doubleword ; A32 only
LDRD{cond} Rt, Rt2Z, [Rn, #Rw]! ; pre-indexed, doubleword ; A32 only
LORD{cond} Rt, Rt2, [An], 2RAw ; post-indexed, doubleword ; A32 only

where:
t cond
ype 15 an optional conditson code.
can be any one of: Rt
15 the regaster to load.
8 Rn
unsigned Byte (Zero extend to 32 bats on loads.) i the regaster on which the memory address 1s based.
s8 Rw
signed Byte (LOR only. Sign extend to 32 bits.) 18 a regaster contaiming a value to be used as the offset. -fw 15 not permatted in T32 code.
shift

H | . |
onal shifl.
unsigned Halfword (Zero extend to 32 bits on loads. g, W cptonaly

SH 1s the additional register to load for doubleword operations.

signed Halfword (LOR only. Sign extend to 32 bits.) Not all options are available in every mstruction set and architecture.

omitted, for Word. Offset register and shift options
The following table shows the ranges of offsets and availability of these instructions:

— FF
CSUN &) sorrware
sTATE Uy ARM Assem b Iy ©ef Drobman
COMP122 Load Immediate (li) — ARM Book ——

3.6.1 LOAD IMMEDIATE | 3.6 Pseudo-Instructions

This pseudo-instruction loads a register with any 32-bit value:

1dr Load Immediate

When this pseudo-instruction is encountered, the assembler first determines whether or not
it can substitute a mov Rd,#<immediate> Or mvn Rd,#<immediate> instruction. If that is not pos-
sible, then it reserves four bytes in a “literal pool” and stores the immediate value there.
Then, the pseudo-instruction is translated into an dr instruction using Immediate Offset ad-

dressing mode with the pc as the base register.

Syntax

ldr{<cond>} Rd, =<immediate>

* The optional <cond> can be any of the codes from Table 3.2 specifying conditional

execution.

* The <immediate> parameter is any valid 32-bit quantity.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

Assembly of the Load Immediate Pseudo-Instruction

Load Immediate (li)

ARM Book —

2 0000 QAOCDOODO dummy:
2 08000000

3 0008 48656C6C str:

3 6F20576F

3 72606404

3 00

4

5

6 0000 FDSFEOE3 main:
7 0004 FDSFEOE3
8 0008 BA70DFEL

9 000c O4409FES
10

11 0010 OEFOADEL
11 FFOFO000
11 08000000

DEFINED SYMBOLS
pseudoload.s:2
pseudoload.s:3
pseudoload.s:6

pseudoload.s:6

pseudoload.s: 1

.data

word 10,11

.asciz “Hello World\n®

Ltext

.global main
mov r5. #-1013 @ Load r5
ldr r5, =-1013 @ Load r5
1drh r]. =0xFFF @ Load r7
1dr rd, =str @ Load r4

@ with addr

mov) r @ return...

.data:00000000 dusmy
.data:00000008 str
.Ltext:00000000 main
Ltext:00000000 $a
Ltext:00000014 $d

Line 8 shows the 1dr pseudo-instruction being used to load a value that cannot be loaded us-

ing the mov instruction. The assembler generated a load half-word instruction using the pro-

gram counter as the base register, and an offset to the location where the value is stored. The

value is actually stored in a literal pool at the end of the text segment. The listing has three

lines labeled 11. The first line 11 is an instruction. The remaining lines are the literal pool.

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

CSUN D) sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 LDR ARM Ref

LDR (immediate offset)
Load with immediate offset, pre-mndexed immediate offset, or post-indexed immedsate oflsel
Syntax
LOR{ type}{cond) Rt, [Rn {, Roffset}] ; immediate offset
LOR{ type}{cond} Rt, [Rn, #offset]! ; pre-indexed
LDR{ type}{cond) Rt, [Rn), #offset ; post-indexed
LORD{cond} Rt, Rt2, [An {, #offset}] ; immediate offset, doubleword
LDRD{cond} Rt, RtZ, [Rn, Roffset]! ; pre-indexed, doubleword
LORD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, doubleword

where:
¢ cond
ype 15 an optional conditson code.
can be any one of: kt
15 the regaster to load.
B Rn
unsigned Byte (Zero extend to 32 bits on loads.) is the register on which the memory address 1s based.
s8 Rw
sagned Byte (LDR only. Sign extend to 32 bits.) 1$ & regaster containing a value to be used as the offset. -fw 15 not permatted in T32 code.
H shift
unsigned Halfword (Zero extend to 32 bits on loads.) s N optional vt

SH is the additional register to load for doubleword operations.

signed Halfword (LOR only. Sign extend to 32 bits.)
Not all options are available in every mstruction set and architecture.

omitted, for Word. Offset register and shift options
The following table shows the ranges of offsets and availability of these instructions:

- ol

CSUN Bl sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 Load Address (adr) ————— ARM Book ——

3.6.2 LOAD ADDRESS

These pseudo instructions are used to load the address associated with a label:

Syntax
adr Load Address

<op>{<cond>}{s} Rd, label
adrl Load Address Long

They are more efficient than the 1dr rx,=1label instruction, because they are trai

one or two add or subtract operations, and do not require a load from memory.

Operations
Name Effect Description
adr Load Address

Rd < Address of Label

adrl Load Address
Rd < Address of Label

CSUN &) sorrware
CALIFORNIA INDIEAPPDEVELOPER
soaT UV R ARM AS séem b Iy ©ef Drobman

COMP122 MOV ARM Ref ———

Cc2.58 MOV
Move.
Syntax
MOV(S H{cond} Rd, Operand2
MOV{cond} Rd, #iewl6

where:
s
1s an optional suflix. If S s specified, the condstion flags are updated on the result of the
operation.
cond
15 an optional condition code.
Rd
15 the destmation register.
Operond2
15 a flexible second operand.
innlé
1s any value in the range 0-65535.
Operation

The MOV instruction copies the value of Operand?2 into Rd.

In certain circumstances, the assembler can substitute MY Tor MOV, or MOV for MUN. Be aware of this when
reading disassembly histings.

CSUN B4 soFrware
T ARM Assembl Y O eff Brobman

2016-2022
COMP122 Ch 4: ALU Ops ARM Book ——

‘= Modern Assembly Language Programmir

CHAPTER OUTLINE

4.1.7 Multiply Operations with 64-bit Results 88

4.1 Data Processing Instructions 79 4.1.8 Division Operations 89

LR 4.2 Special Instructions 90

4.1.2 Comparison Operations 81 _
4.2.1 Count Leading Zeros 90

4.1.3 Arithmetic Operations 83

4.2.2 Accessing the CPSR and SPSR 91
4.1.4 Logical Operations 85

_ 4.2.3 Software Interrupt 91
4.1.5 Data Movement Operations 86

4.1.6 Multiply Operations with 32-bit Results 87 4.2.4 Thumb Mode 92
4.1.7 Multiply Operations with 64-bit Results 88 4.3 Pseudo-Instructions 93
4.1.8 Division Operations 89 4.3.1 No Operation 93

4.2 Special Instructions 90 :
4.3.2 Shifts 94

4.2.1 Count Leading Zeros 90
4.4 Alphabetized List of ARM Instructions 95
4.2.2 Accessing the CPSR and SPSR 91

4.2.3 Software Interrupt 91

CSUN D) sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
cOMp122 Ch 4: ALU Ops ARM Book —

4.1 Data Processing Instructions

The data processing instructions operate only on CPU registers, so data must first be moved
from memory into a register before processing can be performed. Most of these instructions
use two source operands and one destination register. Each instruction performs one basic

arithmetical or logical operation. The operations are grouped in the following categories:
* Arithmetic Operations,

* Logical Operations,

* Comparison Operations,

* Data Movement Operations,

* Status Register Operations,

* Multiplication Operations, and

* Division Operations.

CSUN B sorrware
v ARM Assemb Iy ©ef Drobman
COMP122 Ch 4: ALU Ops ARM Book —

‘= Modern Assembly Language Programming with the ARM Proces...

4.1.1 OPERAND2

Most of the data processing instructions require the programmer to specify two source op-
erands and one destination register for the result. Because three items must be specified for
these instructions, they are known as three address instructions. The use of the word address in
this case has nothing to do with memory addresses. The term three address instruction comes
from earlier processor architectures that allow arithmetic operations to be performed with
data that is stored in memory rather than registers. The first source operand specifies a regis-
ter whose contents will be on the A bus in Fig. 3.1. The second source operand will be on the

B bus and is referred to as Operand2. Operand2 can be any one of the following three things:
* aregister (re-ris),
e aregister (re-r15) and a shift operation to modify it, or

* a 32-bit immediate value that can be constructed by shifting, rotating, and /or complement-

ing an 8-bit value.

CSUN &) sorrware
CALIFORNIA INDIEAPPDEVELOPER
soaT UV R ARM AS séem b Iy ©ef Drobman

COMP122 Ch 4: ALU Ops ARM Book —

Table 4.2

Formats for Operand2

) _ A 32-bit immediate value that can be constructed from an 8
#<immediate|symbol>

bit value
Rm Any of the 16 registers ro-r15
Rm, <shift_op> # The contents of a register shifted or rotated by an immediate
<shift_imm> amount between 0 and 31
Rm, <shift_op> Rs The contents of a register shifted or rotated by an amount

specified by the contents of another register

Rm, rrx The contents of a register rotated right by one bit through the

carry flag

CSUN

CALIFORNIA

aFe DR JEFF
25| soFTwaRE

INDIE APPDEVELOPER

ARM Assembl
NORTHRIDGE 2016-2022
COMP122
Ch 4: ALU Ops ARM Book —
Operations
Name Effect Description Name Effect Description
add Add and Bitwise AND
Rd < Rn + operand2 Rd < Rn A operand?
adc Add with carry orr Bitwise OR
Rd < Rn + operand2 + carry Rd < Rn Vv operand?2
sub Subtract eor Bitwise Exclusive OR
Rd < Rn — operand? Rd < Rn & operand?
shc Subtract with carry orn COYnPlernent of Bitwise OR
Rd < Rn — operand2 + carry — 1 Rd < —(Rn V operand2)
rsb Reverse subtract bic Bit Clear
Rd < operand2 — Rn Rd < Rn N —operand2
rsc Reverse subtract with carry
Rd < operand2 — Rn + carry — 1

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

Ch 4: ALU Ops

The equivalent ARM assembly program is as follows:

fot:

main:

.data
.asciz
.align
.word
word
.text
.global
@ The b
@ the 1i
stmfd
idr

idr

1dr

1dr

add

ldr

bl

1dmfd
moy

moy

*The sum is

g

main

instruction

nk
spl.llr}] @

rl,=x

®» ®

rl.(r
r2.=y
r2.[r2]
rl.rl,r2
rQ,=fmt
printf
spi.ilr)
r0,.00

D e ®®PEeWwe®

pc.lir

register,

d\n*

to call printf() will overwrite
sO we save it to the stack.
push 1ink register to stack
Load address of x
Load value of x
Load address of y
Load value of y
add x and y
Load address of format string
Call the printf function
Pop 1ink register from the stack
Load zero as return value

Return from main

ARM Book —

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

The following C program will add toge

result.

. #include <stdio.h
stat int x = 5;
tath L y=8;

' Int sum;

SUm = x + y;:

. printf(*The sum is

v return 0:;

d\n®,sum):;

CSUN B sorrware
ARM Assembly g

2016-2022
COMP122 Ch 4: If-Then-Else ARM Book —

Making an [f-Then-Else Construct

The following C code adds three to a if a is odd, and adds seven to a if a is even.

Assuming that the value of a is currently being stored in register r4, the following ARM

assembly code performs the same function:

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

4.1.5 DATAMOVEMENT OPERATIONS

The data movement operations copy data from one register to another:

mov Move,

mvn Move Not, and

@re DR JEFF
23| soFTwaRE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022
Ch 4: ALU Ops ARM Book —
Operations
Name Effect Description

movt Move Top.

The movt instruction copies 16 bits of data into 1

without affecting the lower 16 bits. It is availabl

Syntax

<op>{<cond>}{s} Rd, Operand2

movt{<cond>} Rd, #immedl6

¢ <op> is one of mov Or mvn.

mov

Rd <« operand2

Copy operand?2 to Rd

mvn

Rn < —operand?2

Copy 1’s complement of
operand2

movt

Examples

Rn < (immedl6 < 16) v (Rd A OxFFFF)

Copy immed16 into upper 16
bits of Rd

CSUN

DR JEFF

SOFTWARE

PO i T © Jeff Drobman

ARM Assembly
COMP122

Ch 4: ALU Ops

ARM Book —

4.2.3 SOFTWARE INTERRUPT

The following instruction allows a user program to perform a system call to request operating

system services:
swi Software Interrupt.

In Unix and Linux, the system calls are documented in the second section of the online man-
ual. Each system call has a unique id number which is defined in the /usr/include/syscal-

L.h file. Operations

Syntax

Name Effect Description

swi <syscall_number>

swi ‘Request Operating System | Perform software interrupt

* The <syscall_number> is encoded in the instruction. The operating system may examine it

to determine which operating system service i Example

¢ In Linux, <syscall_numbers is ignored. The s ' @ the following code asks the operating system
- . @ Lo write some characters to standard output
seven parameters are passed in re-r6. No Linu a &1 ; , _
moy r0, #1 @ file descriptor 1 is stdout
parameters. ‘ ldr rl, =msg @ load address of data to write
s ldr r2, =len @ load number of bytes to write
. mov r/., M4 @ syscall ¥ is the write() function
swi % @ invoke syscal

CSUN
ARM Assembly

COMP122 Shift

Arithmetic shift right (ASR)

Arithmetic shift nght by n bits moves the lefl-hand 32-n bits of a register to the right by n places, mnto the
right-hand 32-n bits of the resull. [t copres the original bit[31] of the register into the left-hand n bits of

D gy
SHENER |54]3]2]1]o]
= B [LET °

Figure C2-1 ASR 93

Logical shift right (LSR)

Logical shift right by n bits moves the left-hand 32-n bats of a regaster to the nght by n places, mto the
right-hand 32.n bits of the result. It sets the left-hand n buts of the result to 0.

i 44 Garry
SHERER [5]4]3]2]1]o]
LY Lo &

Figure C2.2 LSR #3
Logical shift left (LSL)

Logical shift left by n bits moves the right-hand 32-n bats of a regaster to the lefl by n places, mto the lefl-
hand 32-n bits of the result. It sets the nght-hand n bits of the result to 0.

Figure C2-3 LSL #3

ARM Ref ———

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

Rotate right (ROR)

Rotate nght by n bats moves the lefi-hand 32-n bits of a register to the right by n places, into the right-
hand 32-n bits of the result. It also moves the nght-hand n bits of the register into the lefi-hand n bits of
the result.

Carry

Flag
111] |5]4]3[2] 1]0) D
| L IEIES I

Figure C2-4 ROR 23

Rotate right with extend (RRX)

Rotate nght with extend moves the bits of a register to the right by ane bit. It copees the carry flag into
bat|31] of the result.

When the mstruction is RRXS or when RRX 15 used in Operand2 with the instructions MOVS, MUNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag 1s updated to bit[0] of the register R,

Carry

I [Tk ET
coa LILER 2

Figure C2-5 RRX

B 1|
Uy

Rotate ARM Ref =

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

CSUN Bl sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 {cond} ARM Book —
Table 3.2 <cond> English Meaniny
al always (this is the default <cond>
ARM condition modifiers | ., 7 oet (2]
ne Z clear (#)
ge N set and V set, or N clear and V clear (=)
1t N set and V clear, or N clear and V set (<)
gt Z clear, and either N set and V set, or N clear and V set (>)
le Z set, or N set and V clear, or N clear and V set (<)
hi C set and Z clear (unsigned >)
s C clear or Z (unsigned <)
hs C set (unsigned =)
cs Alternate name for HS
lo C clear (unsigned <)
cc Alternate name for LO
mi N set (result < 0)
pl N clear (result = 0)
Vs V set (overflow)
Ve V clear (no overflow)

CSUN . B sorrware
ARM Conditionals
COMP122 ARM Ref

The optional condition code 15 shown in syntax descnptions as {cond}. This condition 15 encoded in A32
instructions. For T32 instructions, the condition 15 encoded 1n a preceding IT instruction. An mstruction
with a conditton code is only executed if the condition flags meet the specified condition.

The lollowing is an example of conditional execution 1n A32 code:

ré = rl + r2, don't update flags
ré = rl «» r2, and update flags

rée, r1, r2
ADODS ré, ri, r2
ré, r1, r2 If C flag set then r@ = rl + r2, ADDSCS
; and hpdate flags
ré, ri ; update flags based on ré-rl.
In C the ged algorithm can be expressed as:

-

int ged(int a, int b)

gcd while (s I= b)
Cm™p re, rl (u(:n») :
SUBGT e, 9, rl RSO
SUBLE ri, rl, r@ ; b=b-a;
BNE gcd , rewen 3;
The following examples show implementations of the ged algorithm wath and withowt conditional
SUBGT instructions.
SUBLE

Example of conditional execution using branches in A32 code

This example 18 an A32 code implementation of the ged algorithm, It achieves conditional execution by
using conditsonal branches, rather than mdivadual conditional instructions:

CMP

ged

re, rl
end

loss
rd, ™, rl ; could be SUB rd, r@, rl1 for AS2
ged

SUBS rl, r1, rd ; could be SUB rl, r1, ro for A2
B ged

less

end

The code 15 seven mstructions long because of the number of branches. Every time a branch is taken, the
processor must refill the pipeline and continue from the new location. The other instructions and non-
executed branches use a single cycle each.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

C25

Operand2+shift

Syntax of Operand2 as a register with optional shift

ARM Ref

When you use an Operand2 regaster in an mstruction, you can optionally also specify a shift value.

Syntax
Re {, shift)

where:
L]
15 the register holding the data for the second operand.

shift

ASR #n

arithmetic shaft right n bits, 1 <n <32,
LSL #n

logscal shifl left n bits, 1 <n <31
LSR #n

logscal shifl right n bits, 1 <n <32,
ROR #n

rotate right n bitg, 1 <n <31,
RRX

rotate right one bit, with extend.
type Rs

register-controlled shift 15 available in Arm code oaly, where:

type

1% one of ASR, LSL, LSR, ROR.

Rs

15 an oplional constant or register-coatrolled shift to be applied to Re. It can be one of:

15 a regaster supplying the shift amount, and only the least significant byte 15

used.

il omitted, no shift occurs, equivalent to LSL #8.

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN Q SSIBT{EZ;E
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 Q ARM Ref

ca.7 Saturating instructions
Some A32 and T32 instructions perform saturating anthmetic.

The saturating istructions are:
« | QADD,
« | QOADD,
« | qosue.
. | qsus.
* | SSAT.
* | USAT.

+» Saturating ::= limit on overflow

Some of the parallel instructions are also saturating,

Saturating arithmetic
Saturation means that, for some value of 27 that depends on the instruction:

» For a signed saturating operation, if the full result would be less than -2, the result returned 15 .27
* For an unsigned saturating operation, if the full result would be negative, the result returned is zero.
* If the full result would be greater than 2"-1, the result returmned 1s 27-1.

When any of these occurs, it 1s called ssturation. Some mstructions set the Q flag when saturation occurs.
Note

Saturating mstructions do not clear the Q flag when saturatson does not oceur. To clear the Q flag, use an
MSR instruction.

CS'UN ’ DR JEFF

\&2) soFTwaRE
TAT‘::LLI:\H:'{S:IAIT\ A R IVI AS S e m b Iy @JeffDrobman
kA 2016-2022
COMP122 ARM Ref

Branch/jump: BNE
B{cond} BEQ
BL{cond} BLNE
<no J> BLEQ

returns:

ERET

conditionals:

IT (if-then)

debug:

BKPT

DBG (debug)
HLT (halt)

CSUN Q SSIBT{EZ;E
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 . Branch b ARM Book ——
3.5 Branch Instructions

Branch instructions allow the programmer to change the address of the next instruction to be
executed. They are used to implement loops, if-then structures, subroutines, and other flow

control structures. There are two basic branch instructions:
¢ Branch, and

¢ Branch and Link (subroutine call).

3.5.1 BRANCH 3.5.2 BRANCH AND LINK
This instruction is used to perform conditional and unconditional branches in program exe-
cution: Syntax

b Branch. [frame=single]

It is used for creating loops and if-then-else constructs. bl{<cond>} <target_address>

Syntax

b{<cond>} <target_label>

CSUN B3 sorrware
ARM Assembly
COMP122

Making a Loop

Ch 4: Loop ARM Book —

Suppose we want to implement a loop that is equivalent to the following C code:

/% Insert |oop body statements here *

The loop can be written with the following ARM assembly code:

ovide a sbe

Loop from one to ter

P 2 @ @

add r0.r0.#1 @ Increment the loop counter

CSUN D) sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 —y

int ged(int a, int b) {

while (a != b) // We enter the loop when a<b or a>b, but not when a==
if (a>0Db // When a>b we do this
a-=b;
else // When a<b we do that (no if(a<b) needed since a!=b is checked in while condition)
b = a;
return a;

}

The same algorithm can be rewritten in a way closer to target Arm instructions as:

loop:
// Compare a and b
GT = a > b;
LT ='a < b;
NE = a != b;

// Perform operations based on flag results

if(GT) a -= b; // Subtract xonlyx if greater-than

if(LT) b -= a; // Subtract *onlyx if less—than

if(NE) goto loop; // Loop *onlyx if compared values were not equal
return a;

and coded in assembly language as:

;3551 (it iednideiidan 0, D b
loop: | CMP re, rl p———plset condition "NE" if (a != b)|
. uGTu lf (a > b),

; or "LI" i1f {(a <b)
SUBGT r@, ro, rl1 ; IT "GTIT (Greater Than), & = a-b;

SUBLT ri1, rl, ro ; 1f "LT" (Less Than), b = b-a;
BNE Tloop ; If "NE" (Not Equal), then loop
B L ; 1f the loop is not entered, we can safely return

CSUN &) sorware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 Syscall ARM Ref

C2145 SVC
Operation
o , .
SpteVisar Len. The SVC mstruction causes an exceplion. This means that the processor mode changes to Supervisor, the
Syntax CPSR 1s saved to the Supervisor mode SPSR, and execution branches to the SVC vector.
SVC{cand) #iew 1ew 15 1gnored by the processor. However, it can be retrieved by the exception handler to determine what
service 13 bemng requested.
where:
Note
cond SVC was called SWI in earlier verssons of the A32 assembly language. SWI mstructions disassemble to
is an optional condition code. SVC, with a comment to say that this was formerly SWI.
i
18 an expression evaluating to an integer in the range: c
2 ondition s
« 010 2%.1 (a 24-bit value) in an A32 mstruction. flag
* (255 (an 8-bit value) in a T32 instruction. This mstruction does not change the flags.
C2112 SMC
Secure Monstor Call. SWI 9 Svc
Syntax
SMC{cand} #iexd
where:
cond
15 an optional conditson code.
1ond

15 a 4-bit immediate value. This is ignored by the Arm processor, but can be used by the SMC
exception handler to determine what service is being requested.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122
A13

| . DR JEFF
bl &4)sorrware
ARM Assembly G

ARM Ref

Processor modes, and privileged and unprivileged software execution

The Arm architecture supports different levels of execution privilege. The prvilege level depends on the
processor mode.

Note

Armve-M, Armv7-M, Armv8-M Bascline, and Armv8-M Mainline do not support the same modes as
other Arm architectures and profiles. Some of the processor modes listed here do not apply to these
architectures.

Table A1-1 AArch32 processor modes

Processor mode | Mode number
User (610000
FIQ Bl100o]
IRQ i1ooLo
Supervisor blooll
Moamor ®Io110
Abort wioln
Hyp il
Undefined wion
System wIin

‘o DR JEFF
CSUN 8| soFTwaARE
o Caurony A R |V| | S A oesrronmomn
RRRRRRRRRR

2016-2022
COMP122

ARM
Instruction Set

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

DR JEFF

SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

ARM Ref

ARM architecture versions Condition Field
n ARM architecture version n and above Mnemonic Description Description (VFP)
nT, nJ T or J variants of ARM architecture version n and above EQ Equal Equal
SE ARM v3E, and 6 and above NE Not equal Not equal, or unordered
T2 All Thumb-2 versions of ARM v6 and above CS / HS |Carry Set/ Unsigned higher or same | Greater than or equal, or unordered
6K ARMV6K and above for ARM instructions, ARMv7 for Thumb CC / LO Carry Clear/ Unsigned lower Less than
Z All Security extension versions of ARMv6 and above MI Negative Less than
RM ARMvV7-R and ARMv7-M only PL Positive or zero Greater than or equal, or unordered
XS XScale coprocessor instruction Vs Overflow Unordered (at least one NaN operand)
vC No overflow Not unordered
Flexible Operand 2 HI Unsigned higher Greater than, or unordered
Immediate value #<imm8m> LS Unsigned lower or same Less than or equal
Register, optionally shifted by constant (see below) Rm {, <opsh>) GE Signed greater than or equal Greater than or equal
Register, logical shift left by register Rm, LSL Rs LT Signed less than Less than, or unordered
Register, logical shift right by register Rm, LSR Rs GT Signed greater than Greater than
Register, arithmetic shift right by register Rm, ASR Rs LE Signed less than or equal Less than or equal, or unordered
Register, rotate right by register Rm, ROR Rs AL Always (normally omitted) Always (normally omitted)

Register, optionally shifted by constant encoded in the instraction.

All ARM instructions (except those with Note C or Note U) can have any one of these condition codes afier the
instruction mnemonic (that is, before the first space in the instruction as shown on this card). This condition is

Document Number
ARM QRC 0001L

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks owned by ARM Limited.
Other brands and names mentioned herein may be the trademarks of their respective owners.

(No shift) Rm Same as Rm, LSL #0 All Thumb-2 instructions (except those with Note U) can have any one of these condition codes after the
: . . & instruction mnemonic. This condition is encoded in a preceding IT instruction (except in the case of
Logical shift left Rm, LSL #<shift> Allowed shifts 0-31 conditional Branch instructions). Condition codes in instructions must match those in the preceding IT
Logical shift right Rm, LSR #<shift> Allowed shifts 1-32 instruction.)) »)
Arithmetic shift right Rm, ASR f<shifes Allowed shifts 1-32 On processors without Thumb-2, the only Thumb instruction that can have a condition code is B <label>.
Rotate right Rm, ROR #<shift> Allowed shifts 1-31
Rotate right with extend | Rm, RRX Processor Modes Prefixes for Parallel Instructions
16 User S |Signed arithmetic modulo 2° or 2'%, sets CPSR GEbits
PSR fields (use at least one suffix) 17 FIQ Fast Interrupt Q Signed saturating arithmetic
Suffix Meaning 18 IRQ Interrupt SH | Signed arithmetic, halving results
c Control field mask byte PSR[7:0] 19 Supervisor u Unsigned arithmetic modulo 2% 0r 26, sets CPSR GE bits
£ Flags field mask byte PSR[31:24] 23 Abort UQ | Unsigned saturating arithmetic
s Status field mask byte PSR[23:16] 27 Undefined UH | Unsigned arithmetic, halving results
 J Extension field mask byte PSR[15:8] 31 System

CSUN B sorrware
ARM Assembly & e

2016-2022
COMP122 ARM Ref

dep-re-cate | 'deprskat |

verb [with object]

1 express disapproval of: what | deprecate is persistent indulgence.

- (be deprecated) (chiefly of a software feature) be usable but regarded as obsolete
and best avoided, typically due to having been superseded: this feature is
deprecated and will be removed in later versions | (as adjective deprecated) : avoid
the deprecated <blink> element that causes text to flash on and off.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

Ch 4: |-Set

4.4 Alphabetized List of ARM Instructions

&% DR JEFF
ﬂ SOFTWARE

© Jeff Drobman
2016-2022

ARM Book —

This chapter and the previous one introduced the core set of ARM instructions. Most of these

instructions were introduced with the very first ARM processors. There are approximately 50

additional instructions and pseudo instructions that were introduced with the ARMv6 and

later versions of the architecture, or that only appear in specific versions of the ARM. There

Name Page Operation

adc |83 | Add with Carry

add |83 | Add

adr 75 Load Address

adrl (75 Load Address Long
and |85 Bitwise AND

asr 94 | Arithmetic Shift Right
b 70 | Branch

bic 86 Bit Clear

bl 71 Branch and Link

bx 92 | Branch and Exchange
clz 90 Count Leading Zeros

CSUN &) sorware
pmCuronNis ARM Assem b |y SRET

2016-2022
cOMP122 Ch 4: |-Set ARM Book —
cmn | 81 Compare Negative
cmp | 81 Compare mov | 86 Move
eor 85 Bitwise Exclusive OR movt | 86 Move Top
Idm |65 | Load Multiple Registers mrs | 91 Move Status to Register
1dr 73 Load Immediate msr | 91 Move Register to Status
Idr 64 Load Register mul | 87 Multiply
Idrex |69 | Load Multiple Registers mvn | 86 | Move Not
Isl 94 | Logical Shift Left nop |93 No Operation
Isr 94 | Logical Shift Right orn |86 Bitwise OR NOT
mla | 87 Multiply and Accumulate

B sorrware
CSUN LS
pmCuronNis ARM Assem b |y SRET

2016-2022
cOMp122 Ch 4: |-Set ARM Book ——
orr 85 Bitwise OR sub |83 Subtract
ror 94 Rotate Right swi |91 Software Interrupt
rrx 94 Rotate Right with eXtend swp |68 Load Multiple Registers
rsb 83 Reverse Subtract teq 81 Test Equivalence
rsc 83 | Reverse Subtract with Carry tst 81 Test Bits
sbc |83 | Subtract with Carry udiv |89 [Unsigned Divide
sdiv | 89 Signed Divide umlal | 88 Unsigned Multiply and Accumulate Long
smlal | 88 Signed Multiply and Accumulate Long umull | 88 Unsigned Multiply Long

smull [88 | Signed Multiply Long

stm | 65 Store Multiple Registers

str 64 Store Register

strex | 69 Store Multiple Registers

AAAAAAAAAA

TTTTTTTTTTTTTTT

RRRRRRRRRR

COMP122

ARM Assembly

\ DR JEFF

25 soFTwARE

INDIE APPDEVELOPER
© Jeff Drobman
2016-2022

coranac.com

Website: coranac.com

CSUN : B soFrware
Registers

2016-2022
COMP122

coranac.com [—

std | gcc (arm description
r0-r3|r0-r3 |al-a4 argument / scratch
r4-r7|rd-r7 |vi-v4 variable

8 | r8 | V5 variable

9 | 9 \v6/SB platform specific
rio| sl | v7 variable

ril1 | fp | v8 | variable / frame pointer
ri2 | ip | IP [Intra-Procedure-call scratch

ri3 | sp | SP Stack Pointer
ri4 | Ir | LR Link Register
ri5| pc | PC Program Counter

Table 23.1. Standard and alternative register names.

CSUN B sorrware
pmCuronNis KoY: d / Sto re SRET

2016-2022
COMP122
coranac.com

23.3.3. Memory instructions: load and store

op{cond}{type} Rd, [Rn, Op2] OP2 ::={Rs, Rs+offset, <const/immed>}

{cond} ::= {EQ, NE, GE, GT, LE, LT}
{type} ::= {B, SB, H, SH, W, SW}

Memory ops vs C pointers/arrays

To make the comparison to C a little easier, I will sometimes indicate what happens using pointers, but in order to do that I will
have to indicate the type of the pointer somehow. I could use some horrid casting notation, but it would be easiest to use a
form of arrays for this, and use the register-name + an affix to show the data type. I'll use*_w’ for words, *_h’ for halfwords,

and '_b’ for bytes, and *_sw’, etc. for their signed versions. For example, r0 sh would indicate that r 0 is a signed halfword
pointer. This is just a useful bit of shorthand, not actually part of assembly itself.

@ Basic load/store examples. Assume rl contains a word-aligned address
ldr 0 ol 4 @ rO= *(u32*)rl; //or r0O= rl w[0];
str r0, [rl) @ *(u3d2*)rl= r0; //or rl w[l]= x0;

[push and pop are not universal ARM instructions

CSUN

CALIFORNIA

Add

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

(=)

STATE UNIVERSITY © Jeff Drobman
NORTHRIDGE 2016‘2022
COMP122
coranac.com —
@ Possible variations of data instructions
add r0, rl, #1 @ r0 = rl + 1
add r0, rl, r2 @ r0 = rl + r2
add r0, rl, r2, 1sl $4 @ r0 = rl + r2<<4
add r0, rl, r2, 1sl r3 @ r0 = rl + r2<<r3
@ op= wvariants
add r0, x0, #2 @ r0 += 2;
add r0, #2 @ r0 += 2; alternative (but not on all assemblers)
@ Multiplication via shifted add/sub
add rD, rl, rl, 1lsl $4 @ 0 = rl + 16*rl = 17*rl
rsb r0, rl, rl, 1lsl $4 @ r0 = 16*rl - rl = 15*rl
rsb r0, rl, #0 @ x0 = 0 - rl = -rl
@ Difference between asr and lsr
mvn rl, #0 @ rl = ~0 = OxFFFFFFFF = -1
mov r0, rl, asr #l1l6é @ r0 = -1>>16 = -1
mov r0, rl, lsr #16 @ r0 = OxFFFFFFFF>>16 = (xFFFF = 65535
@ Signed division using shifts. rl= r0/16
@ if (x0<0)
@ r0 += 0x0F;
@ xrl= x(0>>4;
mov rl, r0, asr #31 @ rO0= (r0>=0 ? 0 -1);
add r0, x0, rl, lsr #28 @ += 0 or += (0xFFFFFFFF>>28 = (OxF)
mov rl, r0, asr #4 @ rl = r0>>4;

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

ALU Ops

DR JEFF

25 soFTwaARE

INDIEAPPDEVELOPER

© Jeff Drobman
2016-2022

COMP122
coranac.com ™

opcode | operands function

Arithmetic opcode operands function
adc Rd, Rn, Op2(Rd = Rn + Op2 + C Status ops
add Rd, Rn, Op2 [Rd = Rn + Op2 cmp Rn, Op2 Rn - Op2
rsb Rd, Rn, Op2 [Rd = Op2 - Rn cmn Rn, Op2 Rn + Op2
rsc Rd, Rn, Op2 (Rd = Op2 - Rn - IC teq Rn, Op2 Rn ~ Op2
sbc Rd, Rn, Op2 [Rd = Rn - Op2 - IC tst Rn, Op2 Rn & Op2
sub Rd, Rn, Op2 |Rd = Rn - Op2 Multiplies

Logical ops mia Rd, Rm, Rs, Rn Rd = Rm * Rs + Rn
and Rd, Rn, Op2 |Rd = Rn & Op2 mul Rd, Rm, Rs Rd = Rm * Rs
bic Rd, Rn, Op2 [Rd = Rn &~ Op2 smlal |RdLo, RdHi, Rm, Rs|RdHiLo += Rm * Rs
eor Rd, Rn, Op2 [Rd = Rn ~ Op2 smull |RdLo, RdHi, Rm, Rs|RdHiLo = Rm * Rs
mov Rd, Op2 Rd = Op2 umlal |RdLo, RdHi, Rm, Rs|RdHiLo += Rm * Rs
mvn Rd, Op2 Rd = ~Op2 umull |RdLo, RdHi, Rm, Rs|RdHiLo = Rm * Rs
orr Rd, Rn, Op2 [Rd = Rn | Op2

23.2: Data processing instructions. Basic format op{cond}{s} Rd, Rn, Op2, cond and s are the optional condition and status codes,
and Op2 a shifted register.

Conditional

2016-2022
COMP122

coranac.com —

All instructions are conditional
Each instruction of the ARM set can be run conditionally, allowing shorter, cleaner and faster code.

@ // r2= max(r0, rl):
@ r2= rO>=rl ? r0 : rl;

@ Traditional code

cmp rQ, rl
blt .Lbmax @ r1>r0: jump to rl=higher code
mov r2, r0 @ r0 is higher
b .Lrest @ skip rl=higher code
.Lbmax:
mov r2, rl @ rl is higher
.Lrest:

@ rest of code

@ With conditionals; much cleaner
cmp o | (R o |
movge r2, r0 @ r0 is higher
movlt r2, rl @ rl is higher
@ rest of code

Another optional item is whether or not the status flags are set. Test instructions like cmp always set them, but most of the other require
an ‘-g’ affix. For example, sub would not set the flags, but subs would. Because this kinda clashes with the plural ‘s, I'm using adding an

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

Load

@ DR JEFF
25| soFTwaRE

. INDIE APPDEVELOPER
u I p e © Jeff Drobman

2016-2022
coranac.com ™
adr r(, words+lE @ u32 *src= &words([4)];
@ 5 et s e e o
ldmia r0, {rd4-x7) @ *src++ PRE) BT R PR
ldmib r(0, {(rd4-r7) @ *++src e e N
ldmda r0, (rd4-x7) @ *src-- -3, -2, -1, O
ldmdb rQ, {rd-xr?7)}) @ *--src -4, -3, -2, -1
.align 2
words:
.word -4, -3, =2, -1
.word Hisae B b e
Block op Standard Stack alt
Increment After |ldmia / stmia [ldmfd / stmea
Increment Before (ldmib / stmib (ldmed / stmfa
Decrement After |ldmda / stmda |ldmfa / stmed
Decrement Before [ldmdb / stmdb |ldmea / stmfd

@ DR JEFF
B2 soFTwaARE
ARM Assembly g

COMP122 2016-2022

ARM Ref Manual

(@rsm) DR JEFF
CSUN Igl SOFTWARE
STA?r'::Lé:cl’s:li QQQQ @J D b
RRRRRRRRRR ARM Assembly
COMP122
ARM Ref
arm Developer OOO Q

Instruchon Set Assembly Gwde for Armv7 and

earlier Arm architectures Reference Guide Version
20

Developer Documentation

L
Instruction Set Assembly Guide for Armv7 ‘ n S t r u Ct I O n S et
and earlier Arm architectures Reference
Guide Version 2.0

o Assembly Guide for
D meearere Armv/ and earlier Arm

point Programming

arcnitectures Reference
Guide Version 2.0

CSUN B sorrware
ARM Assembly

COMP122 ARM Ref

arm Developer IP PRODUCTS TOOLS AND SOFTWARE ARCHITECTURES INTERNET OF THINGS COMMUNITY SUPPORT DOCUMENTATION powNLoADS Q) &

Overview Processors ¥ DesignStart ¥ Graphics and Multimedia ¥ SystemIP ¥ Physical IP ¥ Security IP ¥ Subsystem ¥ Wireless ¥

Arm processors are:

el L3 G

R g

2

4

Arm Cortex-A Series Arm Cortex-R Series Arm Cortex-M Series
The Arm Cortex-A series of applications processors The Arm Cortex-R series provides a range of processors The Arm Cortex-M series contains the smallest/lowest
provide a range of solutions for devices undertaking optimized for high performance, hard real-time power processors build by Arm, optimized for discrete

complex compute tasks. applications. processing and microcontrollers.

CSUN &) sorrware
CALIFORNIA INDIEAPPDEVELOPER
soaT UV R ARM AS séem b Iy ©ef Drobman

ARM Ref
arm Developer IP PRODUCTS TOOLS AND SOFTWARE ARCHITECTURES INTERNET OF THINGS COMMUNITY SUPPORT DOCUMENTATION powNLoADs Q) .'
Overview Base ISAs ¥ Custom Instructions DSP extensions ¥ Floating Point SIMD ISAs ~

Arm Instruction Set Architecture

The Arm architecture supports three instruction sets: Aé64, A32 and T32.

e The A64 and A32 instruction sets have fixed instruction lengths of 32-bits.

e The T32 instruction set was introduced as a supplementary set of 16-bit instructions that supported improved code density for
user code. Over time, T32 evolved into a 16-bit and 32-bit mixed-length instruction set. As a result, the compiler can balance
performance and code size trade-off in a single instruction set.

Explore these instruction sets:

Ab64 AN ik
Instruction set Instruction set Instruction set

The A64 instruction set, introduced The A32 instruction set, referred to The T32 instruction set, referred to
in Armv8-A to support the 64-bit as ‘ARM’ in Armvé and Armv7 as ‘Thumb’ in Armvé and Armv7
architecture architectures architectures

CSUN B sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 ARM Ref

a rm Developer IP PRODUCTS TOOLS AND SOFTWARE ARCHITECTURES INTERNET OF THINGS COMMUNITY SUPPORT DOCUMENTATION DOWNLOADS Q

A32 Instruction Set

A32 instructions, known as Arm instructions in pre-Armv8 architectures, are 32 bits wide, and are aligned on 4-byte boundaries. A32
instructions are supported by both A-profile and R-profile architectures.

A32 was traditionally used in applications requiring the highest performance, or for handling hardware exceptions such as interrupts
and processor start-up. Much of its functionality was subsumed into T32 with the introduction of Thumb-2 technology.

Most A32 instructions only execute when previous instructions have set a particular condition code. This means that instructions onl
have their normal effect on the programmers’ model operation, memory and coprocessors if the N, Z, C and V flags satisfy a condition
specified in the instruction. If the flags do not satisfy this condition, the instruction acts as a NOP. This means that execution advance:
to the next instruction as normal, including any relevant checks for exceptions being taken, but has no other effect. This conditional
execution of instructions allows small sections of if- and while-statements to be encoded without the use of branch instructions.

The condition codes are:

Condition Code Meaning

N Negative condition code. Set to 1 if result is negative.

VA Zero condition code. Set to 1 if the result of the instruction is O.

C Carry condition code. Set to 1 if the instruction results in a carry condition.

Vv Overflow condition code. Set to 1 if the instruction results in an overflow condition.

CSUN Bl sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122
ARM Ref ———
arm Deve|oper IP PRODUCTS TOOLS AND SOFTWARE ARCHITECTURES INTERNET OF THINGS COMMUNITY SUPPORT DOCUMENTATION DOWNLOADS Q -'
Overview Base ISAs ¥ Custom Instructions DSP extensions ¥ Floating Point SIMD ISAs ¥~
Custom Instructions DSP extensions Floating Point
Arm Custom Instructions support Arm Cortex processors with digital The Arm architecture provides
the intelligent and rapid signal processing (DSP) extensions high-performance and high-
development of fully integrated offer high performance signal efficiency hardware support for
custom CPU instructions without processing with flexible, easy-to- floating-point operations in half-,
software fragmentation use programming single-, and double-precision
arithmetic
Learn more Learn more
Learn more
Helium Neon
Arm Helium technology is an extension of the Armv8.1-M Arm Neon technology is an advanced Single Instruction
architecture and delivers a significant performance uplift Multiple Data (SIMD) architecture extension for the Arm
for machine learning and digital signal processing Cortex-A processor series and for Cortex-R52 processors

applications

CSUN B sorrware
ARM Assembly & e

COMP122 R Rt 2016-2022
Contents

Instruction Set Assembly Guide for Armv7 and
earlier Arm® architectures Reference Guide

Part A Instruction Set Overview
Chapter A1 Overview of AArch32 state
A1.1 IO IO 5o 0 R S R T G S A S A1-26
A1.2 Changing between A32 and T32 instruction set statescc. coeeeeeeeeeerennne. A1-27
A1.3 Processor modes, and privileged and unprivileged software execution A1-28
A1.4 Processor modes in Armv6-M, Armv7-M, and Armv8-Mc.ceeeceeeevveenccnnnnn. A1-29
MEE IRODINR BT ARTOTIER BRI s b st SRR RS SRR AR R RO s o A1-30
A1.6 General-purpose registers in AArch32 Statecccooueeeeeees coeeeeeeieeeeiiieeeeee e A1-32
ALY RODHISr SCCOBREE I ARICNIL BIBEDcvivesmssisvsniiissivovins: Seesssavssvnbissinissarsvasveuivss A1-33
A1.8 Predeclared core register names in AArch32 stateccccccceee coeceeeneneenceennnnn. A1-34
A1.9 Predeclared extension register names in AArch32 stateccc.coceeeeeevunennn.. A1-35
A1.10 Program Counter in AAICh32 Stalec.ooeuuueniiieeeieies ceieeeeaeeeeeeeasaecns eennas A1-36
ATAY THe G IR0 R ANCIIS S RO e iiiailii st il e sy S iiin T s ek A1-37
A1.12 Application Program Status REGISIErccc.uuueeeeeeeeeeiieeieeeiiiaeeeesissaeeeesanseenns A1-38
A1.13 Current Program Status Register in AArch32 stateccccceeeeuveerviciireeennn. A1-39
A1.14 Saved Program Status Registers in AArch32 statecccoeeeeeuueerivcvieeeeennn. A1-40

AT. 1D “A32 aNna 132 NSIrUCHION SO OVOIVIOW :.viciivii iisinsiviivisissiniciidssebssiniinds soueovavnnivevas A1-41

CSUN D) sorrware
. ARM A ssem b | y e

2016-2022
COMP122 ARM Ref

A1 Terminology

Thas document uses the following terms to refer to instruction sets.
Instructzon sets for Armv7 and carlier archatectures were called the ARM and Thumb mstruction sets.

Thas document describes the mstruction sets for Armv7 and carlser architectures, but uses terminology
that is introduced with ArmvS:
Al2
The A32 instruction set was previously called the ARM instruction set. It is a fixed-length
mstruction set that uses 32.bit instruction encodings.
™
The T32 mstruction set was previously called the Thumb instruction set. It is a variable-length
mstruction set that uses both 16-bit and 32.bit instruction.
AArch32
The AArch32 Execution state supports the A32 and T32 instruction sets.
The Arm 32.bit Execution state uses 32-bit general purpose regasters, and a 32-bit program counter {PC),
stack pointer (SP), and link regsster (LR). In implementations of the Arm architecture before ArmvS,
execution is always in AArch32 state.

Note
Some examples and descriptions in this document might apply only to the armnasn legacy assembler.

CSUN D) sorrware
. ARM A ssem b | y e

2016-2022
COMP122 ARM Ref

A16 General-purpose registers in AArch32 state

There are restrictions oa the use of SP and LR as general purpose registers.

With the exception of Armvé-M, Armv7-M, Armv8-M Baseline, and ArmvE-M Mainline based
processors, there are 33 general-purpose 32-bit registers, including the banked SP and LR registers.
Fifteen general-purpose registers are visible at any one time, depending on the current processor mode.
These are RO-R12, SP, and LR. The PC (R15) is not considered a gencral-purpose register.

SP (ar R13) is the srack pointer. The C and C++ compilers always use SP as the stack pointer. Arm
deprecates mast uses of SP as a general purpose register. In T32 state, SP s strictly defined as the stack
poanter. The instruction descriptions in Chapter C2 A32 and T32 Instructions oo page C2-101 describe
when SP and PC can be used.

In User mode, LR {or R14) is used as a link regisfer to store the return address when a subroutme call is
made. It can also be used as a general-purpase register if the return address is stored on the stack.

In the exception handling modes, LR bolds the return address for the exception, or a subroutine return
address if subroutine calls are executed withm an exception. LR can be used as a general-purpose register
if the return address is stored on the stack.

CSUN D) sorrware
. ARM A ssem b | y e

2016-2022
COMP122 ARM Ref

A18 Predeclared core register names in AArch32 state
Many of the core register names have synonyms.
The followmng table shows the predeclared core registers:

Table A1-2 Predeclared core registers in AArch32 state

Register names | Meaning

re-rlS and RO-R1S | General purpose registers.

al-ad Argumnent, result or scrasch registers. These are synonyms for RU to R3.
vi-v@ Vanable registars, Thess are synonyms for R4 o R11,

SB Static base register. This ix a synomm for RO,

1P Intra-procedure call scratch register. Thas is 2 synonym for R12.

Sp Stack pointer. This i a synonym for R13.

LR Lk register. This is a synomm for R14

PC Program counter. This s 3 synonym for R15,

With the exception of 41-a4 and vi1-v8, you can write the register names either in all upper case or all
lower case.

CSUN B8 ke
ARM Assembly

COMP122 ARM Ref PC -

A1.10 Program Counter in AArch32 state
You can use the Program Counter explicitly, for example m some T32 data processing instructions, and
implicitly, for example in branch instructions.

The Program Counter (PC) = accessed as PC (o R1S5). It is incremented by the szze of the instruction
executed, which is always four bytes m A32 state. Branch instructions load the destination address into

the PC. You can also load the PC directly using data operation instructions. For example, to branch to the
address in a general purpose register, use:

N PC,
During execution, the PC does not contain the address of the cumrently executing instruction. The address
of the currently executing instruction s typecally PC-8 for A32, or PC4 for T32.
——— Note ————

Arm recommends you use the 8X instruction to jump to an address or to retum from a function, rather
than writing to the PC directly.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

ARM Ref

A1.15 A32 and T32 instruction set overview
A32 and T32 instructions can be grouped by functional area.

All A32 mstructions are 32 bits loag. Instructions are stared word-aligned, so the least significant two
bits of instruction addresses are always zero in A32 state.

T32 instructions are either 16 or 32 bats long. Instructions are stored half-woed aligned. Some
instructions use the least significant bit of the address to determine whether the code being branched to is
T32or A3

Before the introduction of 32-bit T32 instructions, the T32 instruction set was limited to a restricted
subset of the functionality of the A32 instruction set. Almost all T32 instructions were 16-bit. Together,
the 32.bit and 16-bat T32 instructions provide functionality that = almost identical to that of the A32
instruction set.

The followmg table describes some of the functional groupings of the available instructions.

Instruction group

Description

Branch and control

These instructions do the following:

Branch to subroutines.

Branch backwards to foem loops.

Branch forwand in conditional strectures,

Make the following instrection conditional without branching.
Change the processor betwees A32 state and 132 state.

S 0.9 958

Duta processing

These instructions operate on the geseral-purpose registers. They can pesform operations such as addition,
subtraction, or bitwise logic on the coments of two registers and place the result in a third register. They can
also operase on the value in a single register, or on a value in a register and an imenediste value supplied
withim the instruction.

Long multiply instrections give a 64-bit result in two registers

Register load and

These instructions load or store the value of a single register from or to memory, They can load or store a 32-
bt word, 2 16-bat halfword, or an 8-bat unsigned byte. Byte and halfwced loads can cither be sign extended or
zero extended to fill e 32-bat register.

A few instructions are also defined that can load or store 64-bit doubleword valwes into two 32-bit registers.

Multiple register load
and store

These instructions load or store amy subset of the peneral-purpose registers from or fo memory.

Stistus register access

These instructions move the contents of 3 status register o or from a general-purposs register,

PSW

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN bl @Sﬁ%ﬁ%‘f
sTATEUNIVERS ARM Assem \ ©ef Drobman
COMP122 ARM Ref PSW

A1.12 Application Program Status Register

The Application Program Status Register (APSR) holds the program status flags that are accessible in
any processor mode.

It holds copies of the N, Z, C, and V condition flags. The processor uses them to determine whether or
not to execute conditional mstructions.

The APSR also holds:

* The Q (saturation) flag.

* The APSR also holds the GE (Greater than or Equal) flags. The GE flags can be set by the parallel
add and subtract instructions. They are used by the SEL instruction to perform byte-based selection
from two registers.

These flags are accessible in all modes, using the MSR and MRS instructions.

A1.13 Current Program Status Register in AArch32 state

The Current Program Status Register (CPSR) bolds the same program status flags as the APSR, and
some additional information.

It bolds:

* The APSR flags.

* The processoc mode.

* The interrupt dasable flags.

* The instruction set state (A32 or T32).

* The endsanness state.

* The execution state bats for the IT block.

The executson state bits control condstional execution in the IT block.

Only the APSR flags are accessable in all modes. Arm deprecates using an MSR instruction to change the
endsanness bit (E) of the CPSR, in any mode. Each exception level can have its own endsanness, but
mixed endianness within an exception level = deprecated.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly

ARM Ref ——

Appiication
level view S,ﬂemlznlvim
(i L

User |Systom| Hyp' |Supervsor| Abot |uncefined | Montor: | RQ | FQ
RO R0 usr
R1 R1 _use
R2 R2Z usr
R3 R3 usr
R4 RA_use
RS [RS_usr
RA R5_use
R7 RT _use
R RE usr RE 1q
RS RS usr RS9 fq
R10 R10 uw R10 1q
R11 R11_usr R11 fig
R12 R12_usr R12_fq
Sp SP_usr |SP_typ |SP sw [SP abt |SP ued |SP_mon [SP_ i SP_fiq
LR |LR_use LR _sve |LR_asbt LR und |LR mon [LR i LR_fq
PC |PC
|APER |[CPSR

SPER hyp |SPSR swe |SPER abt [SPSR und [SPER mon|SPSR g |SPER fig
ELR hyp

$ Exists anly in Secure state.
T Exists anly in Non-secure state.

Calls with no entry indcate that the User mode register s used.

Figure A1-1 Organization of general-purpose registers and Program Status Registers

In Armv6-M, Armv7-M, ArmvE-M Baseline, and Armv8.M Mainline based processors, SP is an alas
for the two banked stack poanter registers:

* Main stack pointer register, that is caly available in privileged software execution.

* Process stack pointer register.

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN B sorrware
ARM Assembly
COMP122 ARM Ref

A1S5 Registers in AArch32 state

Arm processors provide general-purpose and special-purpose registers. Some additional registers are
available in privileged execution modes.

In all Arm processors m AArch32 state, the following registers are available and acoessible in any
processor mode:

* 15 generalpurpase registers RO-R 12, the Stack Painter (SP), and Link Register (LR).
* | Program Counter (PC).
* | Application Program Status Register (APSR).

Note

* SP and LR can be used as gencral-purpose registers, although Arm deprecates using SP other than as
a stack pointer.

Additional regasters are available in privileged software execution. Arm processors have a total of 43
registers. The registers are arranged in partially overlapping banks. There is a different register bank for
cach processor mode. The banked regasters give rapad context switching for dealing with processor
exceptions and pavileged operations.

The additional registers m Arm processars are:

* 2 supervisor mode registers for banked SP and LR.

* 2 abort mode regasters for banked SP and LR.

* 2 undefined mode regasters for banked SP and LR.

* 2 interrupt mode registers for banked SP and LR.

* 7 FIQ mode registers for banked R8-R12, SP and LR.

* 2 monitor mode registers for banked SP and LR,

* | Hyp mode register for banked SP.

* 7 Saved Program Status Register (SPSRs), one for cach exception mode.

* | Hyp mode register for ELR_Hyp to store the preferred retumn address from Hyp mode.

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

COMP122

ARM Assembly

@ DR JEFF
B2 soFTwaARE
© Jeff Drobman
2016-2022

ARM Instruction Set

CSUN 853 sorrware

ARM Instruction Set

2016-2022
COMP122 Summary ARM Ref ——
c2A1 A32 and T32 instruction summary
Mnamonic Brief description
ADC, ADD Add with Carry, Add
ADR Load program or register-relative address (short range)
AND Logxal AND
ASR Arithmetic Shaft Right
B Branch
BFC BFI Bit Field Clear and Insert
BIC Bit Clear
BXPT Soltware breakpomt
BL Branch with Link
BLX, BLXNS Branch with Link, change mstruction set, Branch with Link and Exchange (Noa-secure)
BX, BXNS Branch, change imstruction set, Bramch and Exchange (Non-secure)
CBZ, CBNZ Compare and Branch if {Non |} Zero
cop Coprocessor Data Processing operation
cop2 Coprocessor Data Processing operation
CLREX Clear Exclusive
CLZ Count leading zeros

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

: Esorrware
ARM Instruction Set S et

2016-2022
ARM Ref ——
CNN, CNP Compare Negstive, Compare
cPs Change Processor State
CRC32 CRC32
CRC32C CRC32C
cspa Comsumption of Speculative Data Basrier
D86 Debug
pCPsa Debug switch %o exception level |
DCPS2 Debug switch 0 exception level 2
DCPS3 Debug switch %o exception level 3
DNB, DSB Dats Memory Barner, Dsta Synchronization Bamer
bse Data Synchronization Bamier
EOR Exclusive OR

Exception Return

ESB Error Synchronization Bamier
HLT Halting breakpoimt
HVC Hypervisor Call

CSUN : B sorrware
ARM Instruction Set o i

2016-2022
COMP122

ARM Ref ———
Mnemonic Brief description
I56 Instruction Synchronization Barmer
| I I [f-Then
LDAEX, LDAEXB, LOAEXH, LDAEXD Load-Acquare Reguster Exclusive Woed, Byte, Halfword, Doubleword
LDC, LDC2 Load Coprocessor
If LOM Load Multiple registers
LDR Load Register with word
LDA, LDAS, LDAH Load-Acquire Reguster Word, Byte, Halfword
LORS Load Register with Byte
LDRBT Load Register wath Byie, user mode
LORD Load Registers with two words
LOREX, LDREXB, LOREXH, LOREXD Load Register Exclusive Word, Byte, Halfwoed, Doubleword
LDRH Load Register wath Halfwaord
LORHT Load Register with Halfward, user mode
LDRSB Load Register with Signed Byvie
LORSET Load Register with Signed Byte, user mode
LDRSH Load Register with Signed Halfword
LORSHT Load Regster with Signed Halfword, user mode
LDRT Load Register with word, user mode
=

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Instruction Set

(=)

ARM Ref ———

LSL LSR Logwxal Shift Len, Logwcal Shift Right
MR Move from Register to Coprocessor
MCRR Move fraom Registers to Coprocessar
MLA Multiply Accunwlsie
MLS Multiply and Subtract

| MoV Move
MovT Move Top
MRC Move from Coprocessor 1o Register
MRRC Move from Coprocessor to Registers
MRS Move from PSR 10 Register
MSR Move fraom Register to PSR
ML Multiply
MVN Move Not
NOP No Operatyon
ORN Logical OR NOT
ORR Logxcal OR
PKHBT, PKHTB Pack Halfwords

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN : B sorrware
ARM Instruction Set o i

2016-2022
COMP122 ARM Ref
Mnemonic Brief description
PLD Preload Datas
PLOW Preload Data with intent to Write
PLT Preload Instructon
PUSH, POP PUSH registers to stack, POP registers from stack
QADO, QUADD, QOSUB, QsuB Saturating anthmetic
QADOE, QADD16, QASX, QSUBS, QSUSB1s, Parallel signed saturating arithmetic
QsAX
RBIT Reverse Bis
REV, REV16, REVSH Reverse byte arder
| RFE Retum From Exception
ROR Rotate Right Register
RRX Rotate Right with Extend
RSB Reverse Subtract
RSC Reverse Subtract with Camry
SADOE, SADD16, SASX Parallel Signed arithmetic
s8c Subtract with Carry
SHFX, UBEX Signed, Unsigned Bit Field eXtract
SDIV Signed Divade

ar'| DR JEFF

CSUN . @ SOFTWARE
ARM Instruction Set
COMP122 ARM Ref

SEL Select bytes acoonding o APSR GE fNags

SETEND Set Endianness for memory accesses

SETPAN Set Privileged Access Never

SEV Set Event

SEVL Set Evenst Locally

SG Secure Gateway

SHADDSB, SHADD16, SHASX, SHSUBS, Parallel Signed Halving arithmetic

SHSUB16, SHSAX

SNC Secure Monitor Call

SW Signed Multiply with Accumulate (32 <« 16 x 16 + 32)

SMLAD Dual Signed Multiply Accumalate

(32<«32+16x16+16x 16)

SMLAL Signed Multiply Accunvalate (64 <= 64 + 32 x 32)

SMLALxy Signed Multiply Accummlse (64 << 64 + 16 x 16)

SMLALD Dual Signed Multiply Accunsalate Long

(64<«64+16x16+16x16)

Signed Multiply with Accumulate (32 <= 32 x 16 + 32)

CSUN

DR JEFF

. SOFTWARE
SR ARM Instruction Set O et brsbrnan
NORTHRIDGE 2016-2022
COMP122 Lo I
Mnemonic Brief description
SNLSD Dual Signed Multiply Subtract Accumulate
(32<=32+16x 16 - 16 x 16)
SNLSLD Dual Signed Multiply Subtract Accumulate Long
(6d<=64+ 16x 16 - 16 x 16)
SMMLA Signed 1op word Multiply with Accumulate (32 <= TopWord(32 x 32 + 32))
SMMLS Signed top word Multiply with Subtract (32 <= TopWord(32 - 32 x 32))
SMMUL Signed top word Multzply (32 <= TopWord(32 x 32))
SNUAD, SMUSD Dual Signed Multiply, and Add or Subtract products
SMULxy Signed Multiply (32 <~ |6 x 16)
SNULL Signed Multiply (64 << 32 x 32)
SMULNy Signed Multiply (32 <= 32 x 16)
SRS Store Return State
SSAT Signed Saturate
SSAT16 Signed Saturate, paraliel halfwords
SSUBS, SSUB16, SSAX Parallel Signed arthmetic
sTC Store Coprocessar
STM Store Multzple regasters
STR Store Register with word

CSUN

CALIFORNIA

@% DR JEFF
lgl SOFTWARE

ARM Instruction Set

STATE UNIVERSITY © Jeff Drobman
NORTHRIDGE 2016‘2022
COMP122
ARM Ref ———
STRB Store Register with Byte
STRBY Store Register with Byte, user mode
STRD Store Registers with two words

STREX, STHEXB, STREXH,STREXD

Store Register Exclussve Word, Byte, Halfword, Doubleword

STRH

Store Register with Halfword

STRHT

Store Register with Halfword, user mode

STL, STLB.FTLH

Store-Relesse Word, Byse, Halfword

STLEX, STUEXS, STLEXH, STLEXD

Store-Release Exclusive Word, Byte, Halfword, Doubleword

STRT Store Register with word, user mode
SUB Subliract
SUBS pc, 1r Exception return, no stack

SVC (fq»:tly SWI)

Supervsor Call

SXTAB, SXTAB16, SXTAH

Signed extend, with Additson

SXTB, SXTH Signed extend

SXT816 Signed extend

5YS Execute System coprocessor imstruction
188, TBM Table Branch Byte, Halfword

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Instruction Set

ARM Ref

Mnemonic Brief description
TEQ Test Equivalence
TSY Test

TT,TTT, TTA TTAT

Test Tanget (Alternate Domain, Unpaivileged)

UADOE, UADD16, UASX

Parallel Unsagned anthmetic

UOF

Permanenily Undelined

Unsigned Divide

UHADDSB, UHADD16, LHASX, UHSUBS,
UHSUB16, UHSAX

Parallel Unsagnoed Halving arithmetic

uMaaL Unsagned Multiply Accumulate Accumulate Long
(64 <=32+32+32x132)
UNLAL, UMULL Unsagned Multiply Accumubate, Unsigned Multiply

(64 <«32x 32 +64), (64 <=32x32)

UQADDS, UQADD16, QASX, UQSUES,
UQSUB16, UQSAX

Parallel Unsigned Saturating arithmetic

UsADE Unsigned Sum of Absolute Differences

USADAS Accumulate Unsigned Sum of Absolute Differences
USAT Unsigned Saturate

USAT16 Unsagned Satursie, parallel halfwords

USUSE, UsuB16, USAX

Parallel Unsigned arithmetic

UXTAB, UXTAB1E, UXTAH Unsigned extend with Addsticn

UXTS, UXTH Unsigned extend

UXTB16 Unsagned extend

ve See Chaprer C3 Advanced SIMD Instructions (32-bit) on page C3.357 and

Chaprer C4 Floating-pofnt festructions (32-bir) on page C4.545

WFE, WFI, YIELD

Wait For Event, Wait For Interrupt, Yiekd

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN) sorrwars
. ARM A ssem b | y e

2016-2022
COMP122 Details ARM Ref
Chapter C2 A32 and T32 Instructions
G2 AN T2 RINIRENE BRITEYNIPY. ..o iiiiinhuninisihinrimrisisninsis Ak A AR SRS C2-106
o TR WY R N oo N R Cc2-111
C2.3 Flexible second operand (Operand2)eeeeeeeeeeeeeeeeeeeeeeenereceeseaneessseesssnnns C2-112
C24 Sniax oRODraNaARS 8 CONMIRIE ... s mimiiaisastaiis i mievinss i C2-113
C2.5 Syntax of Operand2las a register with optional shift cccccceuueuuen.... C2-114
D I O s o e A S B B e e e i e e C2-115
c2.7 instructions .. C2-118
B B IR i R C2-119
ORI IREIEI s i s o i A A S S oA A A A B A S A C2-121
(R AN NI I I it s e S T S S AT C2-124
G XT ALY TOOTRMREDIIGIINIY ...cvioiancuiamsmonstnsnssaoissosdi g N s et C2-126
B B N s e R L R C2-128
LPRIET . IR it on ok habis s i oo A AR A DA AR AR A A S A R AR na AP AR i C2-130
. e M RSt R O S 1 LA OO) Lo o A A S C2-132
BRI . TP iunnnonssionsnss s s O O AR B R S BB NSRS A C2-134
0y 2 LI - 1 o USSR C2-135
PIAUTE - . TNt 5o o e s S w5 1 B o i W U 5 T A T AR C2-136
2 R O AR Lo o R e 1 R e R SR B U et C2-138
BRREE I oo i B S A B A A SR C2-139
C2.20 BLX, BLXNS ... e e et eaeae taaeseeassasen aesse aes aeasaan aerns saasaenn e C2-140
e e B BRI G s S s e S S i S C2-142
£ L R D R R TR MR o G A B S b PR L A C2-144
LS N Y TP it B S e G R e AR C2-145

O B N D T —_——— C2-146

CSUN) sorrwars
. ARM A ssem b | y e

2016-2022
COMP122 ARM Ref

. Rl B I e e e e s s S C2-146
JORRRS R I b oot uiuinatet okl bRk SR UA S R RSN Sabib i R i Sk AR Bk I e C2-147
B N A S e S R C2-148
RO T L0 CHUIET TIOR3 B A A S O C2-149
R I S e e e C2-151
LEREEIE. I s am it i O L s B B R AR A C2-153
B Y T R T S S T R B S C2-154
REABE. ORI oo R BSOS A A s C2-155
C2.32 DBG ... et e e e e et e e a et ae a2 aaa aanmnannannn neennnn nann anes C2-157
KRRt TN i i o bt ik G AR b ke AR LR S A S AR W AR A C2-158
T T R A N M L R O N A o O P RO L O S C2-160
B T i s bR SR DO VS R A A AR s C2-162
C2.36 ERET ...t et et e ee e e e aae s aaae s aae s ann anne sannn anns srnnns C2-164
RREDE BEahED i ioncivieiiien nimiasmaisiaas b bas s s n OB A ks i M e R AT USRS S AN ARARE R S H s C2-165
B I T e o L e o S P e o tos A A C2-166
B I Dl e B C2-167
- —— C2-168
Y BT s R S S S N e S RS C2-169
e R P TR W L A R A S L W e Ml e R W M M C2-172

Copyright © 2018, 2019 Arm Limited or its affiliates. All rights 7

reserved.
Non-Confidential

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly
ARM Ref
B I oot e e e s e S S e C2-173
SR LRI BIUNT TRV o Qs s s o s A B B S A% C2-175
D BRIl e e A C2-177
G40 BLINR TInSONRE DRI . oii i i saii i S s s e A e e i C2-179
e d?: BLENT (PG i B s s C2-181
R0 DTN CUTMERNIRNT OTTUPMIRE . o BB oo s 0 A A A S5 C2-183
49 BLINT NBONIRDIRIREVIE B oo s C2-185
Ol B IR B s i R i R S s C2-187
e, ol E T S R e e LT e P e L e e e e ed i O | C2-189
R o i s e S A A R AR i C2-191
C2.83 LSR .. ettt e eae aeen e —eaaeaaen eeasaaeaeet nate aen enn aaen aeranaen eens as C2-193
BRI I RN R IR i e e e O e e e R e e C2-195
Uit TETIREE BT I o e e e e e SR e 52 C2-196
U TV oo S S A T TS S C2-197
C2.57 MLS ... e eee e e st aeaee e saaessaaesaen seesnasas sane naen saen seannan nrnne naaean C2-198
GOl BRI i llhisisiiiiiiissuseiinisiiinmi s s it b aatiie C2-199
R - T e T e e i e e e e C2-201
G200 MIRE IR MR s s s S S S A e S aaie C2-202
C2.61 MRRC GNAMRRGC2 ... e et aeaessasae eesssaae aens sransaaen snsnnens C2-203
C2.62 MRS (PSR to general-purpoSe reGisSter)ceeeeeeeveeees sorevvesenseenssssnssnssnsnnes C2-204
C2.63 MRS (system coprocessor register to general-purpose register) C2-206
C2.64 MSR (general-purpose register to system coprocessor register) C2-207
C2.65 MSR (general-purpose reqiSter toO PSR)ooceeeeeeeeeeieeees ceeeeeeeesseeaneennn e C2-208
Il I e i e S o C2-210
Y T C2-211

(=)

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

gan DR JEFF
« ., . lQISOFTWARE
ARM Conditionals o s

2016-2022
ARM Ref ——

C1.10

Condition code suffixes and related flags

Conditton code suflixes define the conditions that must be met for the mstruction 1o execule.
The following table shows the condition codes that you can use and the flag settings they depend on:

Table C1-1 Condition code suffixes Table C1-2 Condition code suffixes and related flags
DU | Mou— Suffix |Flags Maaning
E E
i e EQ 2 set Equal

NE | Notegual

NE Z clear Not equal
cs Carry set (sdentical 1o HS)
Hs Unsigned highes or (identical to CS) CS or HS | C set Higher or same (unsigned >~)
CC | Camy clear (identical to LO) CCor LO| C clear Lower (unsigned <)
L0 | Unsigned lower (identical s OC) MI N set Negative
MI Minus or negative result PL N clear Positive or zero
PL Positive or zero result Vs Voset Overflow
vs Overflow vC V clear No overflow
i No overflow HI C st and Z clesr Higher (unsigned =)
HI Unsigned hs

wxorl sa LS C clear or Z sl Lower or same (unsigned <=<)

LS Unsigned lower of same

GE N and V the same Segned >=
GE Signed grester than or equal

T N V it <

LT | Signed bess than) ndV diffe Signed
o1 Signed grester than GT Z cleas, N and V the same | Sagned >
LE Signed less than oe equal LE Z set, N and V differ Signed <=
AL Always (this is the default) AL Any Always, Thes suffix s nocmally omiited.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly
ARM Ref
GO TN Bl B R S L2-213
C2.69 ORN (TB20NIY) ..o e eeesseesseesseessssesssesss s s s C2-214
CETO TR s b B O A S e o C2-215
C2.71 PKHBT ANA PKHTBcoooeeeeeeeeeeeeeeeeveseevan v e seessnsssssessesssessssess sesanssnnsssnsnns C2-217
CLTR PLD. PUIIWE BT <. ae s o omasaaamarssii C2-219
C2.78 JPOP ...]ooeeoeeeeee et e e s s s s e C2-221
22 BRI R iiinisinicmsiiinitnissis i i b s SR C2-222
B i e e e B e L C2-223
T B A I . oo C2-224
c2.77 |QAbp16 }... Q ... ¢ Saturating ::= limit on overflow .. . C2-225
2 IS PRI o iciiniionicmsiisiosin s i iR Tk AR Y C2-226
T s oo e e e o e ey e C2-227
O RCIDISUIN . cvscconamsionsssissnsndsnsis o o e A ST C2-228
o7 XL [R O C2-229
G2 RS . Lo i e S ssats C2-230
g T T R N e A S O o L M kSO e o AL R L T C2-231
CIBE BOSUBTE R s i s C2-232
o7 X L B = SO C2-233
2O REV i s i R A A C2-234
RN e e e s B O T e e C2-235
A REVEH. ot R s R R S TR C2-236
C2.89 RFE ...ooeooeeeeeeeeeeeeeeeeeeeeve v eeevssesssesan o e seesseessaeessessseesssesssessnsesan o sosnn s s C2-237
B R e e C2-239
e AR SIS SR £ SR PO L SRl Pt RS C2-241
o A L D C2-243

(=)

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN Q SSIBT{EZ;E
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 Q ARM Ref

ca.7 Saturating instructions
Some A32 and T32 instructions perform saturating anthmetic.

The saturating istructions are:
« | QADD,
« | QOADD,
« | qosue.
. | qsus.
* | SSAT.
* | USAT.

+» Saturating ::= limit on overflow

Some of the parallel instructions are also saturating,

Saturating arithmetic
Saturation means that, for some value of 27 that depends on the instruction:

» For a signed saturating operation, if the full result would be less than -2, the result returned 15 .27
* For an unsigned saturating operation, if the full result would be negative, the result returned is zero.
* If the full result would be greater than 2"-1, the result returmned 1s 27-1.

When any of these occurs, it 1s called ssturation. Some mstructions set the Q flag when saturation occurs.
Note

Saturating mstructions do not clear the Q flag when saturatson does not oceur. To clear the Q flag, use an
MSR instruction.

CSUN B sorrware
ARM Assembly & e

2016-2022
COMP122 ARM Ref
e

lor X < B -) oS, 2-245
294 [SADDS . .1 0 C2-247
e BB ¢ Parallel — Byte/Halfword C5.940
e s e R e e IR C2-251
iy Rl C2-253
C2.98 SBEX oo C2-255
o i e R A (R T T e e L R C2-256
BRI o o s e iy i SR i i AL S C2-257
o By g = o L ——— C2-259
C2.102 SETPAN oo, C2-260
B O e e C2-261
B i it S e, RS e C2-262
e 1 C2-263
C2.106ISHADDS ... o it t m e Totre :

i +* Parallel — Byte/Halfword gi ;2;
PN Rl I e o o S DO UL e e M Wi bR C2-266
i i b o T, C2-267
C2 110 MSHSUBS oo C2-268
b ah g i d e S S S C2-269
ot R ol OO TN L0 | O SO 11 5 L A Y S C2-270
e i oor Sl o o o e e o s C2-271
C2.114 SMLAD ... C2-273
C2.115 SMLAL ..o C2-274
b R T Ao AR 8 e S AN 001 50 UM e A e M S AL C2-275

G L I R N e e e C2-276

CSUN) sorrwars
. ARM A ssem b | y e

2016-2022
COMP122 ARM Ref
G TN LAY . S BeS S SRR R TS ve-278
11 S Sl v R R i C2-279
(i o 2@ T B T 6 R SRS IO NS S SO GO S ST L DR SRS SOERe BB C2-280
DAY DI e s S e C2-281
s I DI s i SRS B L i B SR N RS C2-282
e 123 SRARIL oo s s s e e C2-283
B I i i R R e R R i i S C2-284
[T AR RO S0 oo e LA TS T R S AL N M T e o 0k R e s AR S C2-285
G2 A28 SMURT .. e e e S C2-286
S a2 L B e S T A TS R R L LA LA C2-287
B I R D i s R R e R e i C2-288
R PR R e e o R RV e D NS L L IS v SR RN AT R C2-289
G2 TBFBEIRT v e e e S s C2-291
C2.137 SSATTE ..ot eae e e eean eaaaeaeen e esnesne saaen amn mnnn nae samn mnne C2-292
B TE BRI s isi ot e b i s T s e e C2-293
s A A A B U L O U0 e e DL L R, L W 1 L C2-295
KA. TP SRR WU s B R T A B C2-297
C2.135 STC @NA STC2 ... e et et aeeaee e eeaaaeaaaeaeeenaeenanen aen eesnnnnn s C2-299
R BI6 DI inndsisnmasitsinna i lissithibumunniniisana s atata e v C2-301
B I I L e e C2-302
B T RTIIN B e B o A e e e S S e C2-304
C2.139|STR (immediate OffSOU)|.........c oo et e e eeee e e e ee e e C2-306
2 TS TR O OO o L s i S G T i C2-308
C2.141|STR, unpnvilegedJ...........e et eeeeeeeeeeeaeeeeeneeeeneeeeaeaaeaaansnnnenn C2-310

C2 M2 STRER oo s s s s S e s C2-312

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

U ARM Ref
C2.943 SUB e e 314
A SR s S e C2-317
PR~y v s oo e A o e e 1 01 C2-319
C2.946 SWP ANA SWPB ..o i, C2-320
C2.947 SXTAB oo, C2-321
N s e R e e e C2-323
A TR o v e e e e e s S e e C2-325
e S s g g - Ty S————— C2-327
C2.151 SXTBI6 oo e i, C2-329
CUNRE N o e e e s e C2-330
RSN = sy e e A - S b Ty C2-332
e Sy a0y Rt A PR C2-333
(o7 X 112 1 = C2-334
1. Ol 1 T e C2-336
Dt e S e e B e C2-338
COYB8 LIADD -..cc.co00 . . . — C2-340
.0
C2.159 UADD16 ... * Unsigned arithmetic ~—— C2-342
B S e e e e e B C2-344
o AT A R LR O L DU T B e AL S C2-346
e TR BT C2-347
C2.163 UDIV e i, C2-348
C2.964 UHADDS ..o i) C2-349
BRI e e e e C2-350
I TR o i e et et S o C2-351
C 2167 UHSAX oo, C2-352

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP122

ARM Assembly 8

O TR IR i e i e I e e e el ARM Ref 2-353
o By f B g) e s e 12 ORI) MG oot 0 UL R 1 C2-354
B T L e B S C2-355
B T 0 TTUREIINL v cm s ossainiw o s A O AR A BN S S AN A e C2-356
G L R e e L i e e L e C2-357
S 2T B e e e B o I SRS S AN S U eSO e SRS C2-358
R R G B e C2-359
R TR POIRERI s s A A A N 8 A RN C2-360
B T I e e s C2-361
i BT NTCNBETEIE o cicicisnos s i G S S b R A MR A R C2-362
B T R T B R b A A C2-363
R TN RN s i 3 R R R R S S B S ARSI C2-364
B I I e e C2-365
CER O ETORE cciciciniiitisiii i s A s S PR A SSeesioAn C2-366
B T T e e e e s Pl e et e C2-367
O I TSR oo B R A R A AR C2-368
C2.184 USUBS ... ettt ettt e e e sate ass saae aess siaas anss sasas aass sasa aess sraas aern s C2-370
G TODY CTRSIEE T s A R A i G S A C2-372
e RS gy N e BRI o s AR S Lot DPDPSE S 1 L el R L C2-373
Gl POT IR AIRBT T it it S S o s ks C2-375
C2.188 UXTAH ... et ettt et et it e et st e sasas e aesss s e s saas aaes sas aaes snns C2-377
R N0 CRCEE i i s i e s aa i b A n a aat id C2-379
B T et e ot St A S AR e ot i ot 3 C2-381
i VD MR i s s s i C2-382
C2.192 WIFE ... ettt ettt ettt ettt it e s aaes s saaes aess sasas aess sases aess srses sesnns C2-384

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2016-2022

CSUN

NORTHRIDGE

&% DR JEFF
ﬂ SOFTWARE

INDIEAPPDEVELOPER
ChonI A R |V| AS sem b |y oesrronmomn

COMP122

IT

2016-2022

IF-THEN ARM Ref

The IT (If-Then) instruction makes a single following mstruction (the /T block) conditional. The
conditional mstruction must be from a restracted set of 16-bat instructions.

Syntax " . . :
L ¢ Conditional Execution of Following Instruction
where:

cond
spectfies the conditson for the following instruction.

Deprecated syntax
IT{x{y{z}}} {cond}
where:
x
spectfies the conditson switch for the second instruction in the [T block.
y
spectfies the conditson switch for the third instruction in the IT block.
z
spectfies the conditson switch for the fourth instruction in the [T block.
cond

specifies the condstson for the first instruction i the IT block.
The condition swatches for the second, thard, and fourth instructions in the IT block can be esther:

T
Then. Applies the condition cond to the mstruction. Usage

F The IT block can contain between two and four conditional mstructions, where the conditsons can be all
Else. Applies the inverse condition of cond to the instruction. the same, or some of them can be the logical inverse of the others, but this is deprecated in ArmvE,

The conditional instruction (including branches, but excluding the BKPT mnstruction) must specify the
condition in the {cond} part of 118 syntax.

You are not required to wnte 1T instruchons in your code, because the assembler generates them for you

automatically according to the conditions specified on the following mstructions. However, if you do
write IT mstructions, the assembler validates the conditions specified in the IT instructions agamst the

conditions specified in the following mstructions.

CSUN &) sorrware
CALIFORNIA INDIEAPPDEVELOPER
soaT UV R ARM AS séem b Iy ©ef Drobman

COMP122 MOV ARM Ref ———

Cc2.58 MOV
Move.
Syntax
MOV(S H{cond} Rd, Operand2
MOV{cond} Rd, #iewl6

where:
s
1s an optional suflix. If S s specified, the condstion flags are updated on the result of the
operation.
cond
15 an optional condition code.
Rd
15 the destmation register.
Operond2
15 a flexible second operand.
innlé
1s any value in the range 0-65535.
Operation

The MOV instruction copies the value of Operand?2 into Rd.

In certain circumstances, the assembler can substitute MY Tor MOV, or MOV for MUN. Be aware of this when
reading disassembly histings.

CSUN s soD'FQTJv'(:zzEE
CALIFORNIA INDIE APPDEVELOPE
soaT UV R ARM AS séem b Iy ©ef Drobman

COMP122 PSR ARM Ref

C2.62 MRS (PSR to general-purpose register)
Move the contents of 2 PSR to a general-purpose register.

Syntax
MRS{cond} Rd, psr
where:
cond
15 an optional conditzon code.
Ra
15 the destination register.
psr
15 one of:
APSR
on any processor, in any mode.
CPSR
deprecated synonym for APSR and for use in Debug state, on any processor except
Armv7-M and Armv6é-M.
SPSR
on any processor, except Armve-M, Armv7-M, Armv8-M Baseline, and ArmvE-M
Manline, m pavileged software execution only.
Mpsr
on Armv6-M, Armv7-M, Armv8-M Baseline, and ArmvE-M Mainline processors oaly.
Mpsr
can be any of: IPSR, EPSR, IEPSR, TAPSR, EAPSR, NSP, PSP, XPSR, PRIMASK, BASEPRT,
BASEPRI_MAX, FAULTMASK, or CONTROL.
Usage

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for
example to change processor mode, or to clear the Q fag.

In process swap code, the programmers’ model state of the process being swapped out must be saved,
including relevant PSR contents. Sumilarly, the state of the process being swapped m must also be
restored. These operations make use of MRS/store and load NSR instruction sequences.

CSUN B sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122 Syscall ARM Ref

C2145 SVC
Operation
o , .
Sparvar Les. The SVC mstruction causes an exceplion. This means that the processor mode changes to Supervisor, the
Syntax CPSR 1s saved to the Supervisor mode SPSR, and execution branches to the SVC vector.
SVC{cand) #imw 1mw 15 1gnored by the processor. However, it can be retrieved by the exception handler to determmne what
service 13 bemng requested.
where:
Note
cond SVC was called SWI in earlier verszons of the A32 assembly language. SWI mstruchons disassemble to
is an optional condition code. SVC, with a comment to say that this was formerly SWI.
i
18 an expression evaluating to an integer in the range: c
2 ondition s
« 010231 (a 24-bit value) in an A32 instruction. -
* (255 (an 8-bit value) in a T32 instruction. This mstruction does not change the flags.
C2112 SMC
Secure Monitor Call.
Syntax
SMC{cand} #iexd
where:
cond
15 an optional conditson code.
1ond

15 a 4-bit immediate value. This is ignored by the Arm processor, but can be used by the SMC
exception handler to determme what service is being requested.

CSUN

@3 DR JEFF
SOFTWARE

CALIFORNIA INDIE APPDEVELOPER
ARM Assembl
NORTHRIDGE

COMP122

2016-2022

C2.193 WFI
Wait for Interrupt.
Syntax
WFI{conda}
where:
cond

15 an optional conditson code.

C2192 WFE
Wait For Event.
Syntax
WFE{canda}
where:
cond

15 an optional conditzon code.

Wait ARM Ref

Operation

This 15 a hint instruction. It 18 optional whether this mstruction 15 implemented o not. [f thas instruction
15 not implemented, it executes as a NOP. The assembler produces a diagnostic message if the mstruction
executes a3 a2 NOP on the target.

WEI suspends execution until one of the following evenls occurs:

An IRQ mterrupt, regardless of the CPSR [-bal.

An FIQ mterrupt, regardless of the CPSR F-bal.

An Imprecise Data aboet, unless masked by the CPSR A-biL.

A Debug Entry request, regardless of whether Debug is enabled.

Operation

This 15 a hint instruction. It 1s optional whether this imstruction 15 implemented oe not. If thas instruction
15 not implemented, it executes as a NOP. The assembler produces a diagnostic message if the mstruction
execules as a NOP on the target.

If the Event Register 1s not set, NFE suspends execution until one of the following events occurs:

* An IRQ mterrupt, unless masked by the CPSR I-bit.

* An FIQ mterrupt, unless masked by the CPSR F-bit.

* An Imprecise Data aboet, unless masked by the CPSR A-bit.

* A Debug Entry request, if Debug 15 enabled.

* An Event sagnaled by another processor using the SEV mstruction, or by the current processor using
the SEVL instruction.

If the Event Register is sel, NFE clears it and retums immedaately.
I£ WFE 15 implemented, SEV must also be implemented.

CSUN D) sorrware
. ARM A ssem b | y e

2016-2022
COMP122
ARM Ref
Chapter C3 Advanced SIMD Instructions (32-bit)
C3.1 Summary of Advanced SIMD InStructionscoeeeeeeeeeeeeeeeieeeeeeeeeeeaaaans C3-391
C3.2 Summary of shared Advanced SIMD and floating-point instructions C3-394

C3.3 Interleaving provided by load and store element and structure instructions C3-395
C3.4 Alignment restrictions in load and store element and structure instructions C3-396

Bl R IR B R i s R g C3-397
CRU FolEE FOTMIAK . i b i i b s st C3-398
Gl DRI WL ..o naisisiissmsen s i D A R PR RO PSS TSR3 C3-399
Ca 8 VADD A WABER. i i i i v i C3-400
BRI T IREIES oo e s AR S A SR IS R R C3-401
G 10 VAGCLE. VACLT, VACGE et VAGGTciicsisinmmmnmmiiss i C3-402
R TEE (IAEIEY. i R s T R A B R A C3-403
PN SR TR E] U — C3-404
C3 13 VADDI and VADDW C3-405

+* SIMD ::= vector operations

CSUN D) sorrware
pmCuronNis ARM Assem b |y SRET

2016-2022
COMP122

Crypto Helpers ARM Ref

Chapter C5
A32/T32 Cryptographic Algorithms

Table C5-1 Summary of AJ2/T32 cryptographic instructions

Mnemonic | Brief description

AESD AES single round decryplion
AESE AES single round encrypticn
AESINC AES mverse mix columms
AESMC AES mix columns

SHALC SHAI hash wpdste (chooss)
SHA1H SHAI fixed rotate

SHAIM SHAI hash wpdate (maponty)
SHALP SHA| hash update (parity)

SHAISU® | SHAI schedule update 0

SHAL1SU1 | SHAI schedule update |
SHA256H2 | SHA256 hash update past 2

SHA25EH SHA256 bash update pant]
SHA2565U8 | SHA236 schedule update 0
SHA2565U1 | SHA256 schedule update |

