

CALIFORNIA TATE UNIVERSITY NORTHRIDGE

Rev 3-8-23

Computer Organization (Architecture) Lecture 1B: Status

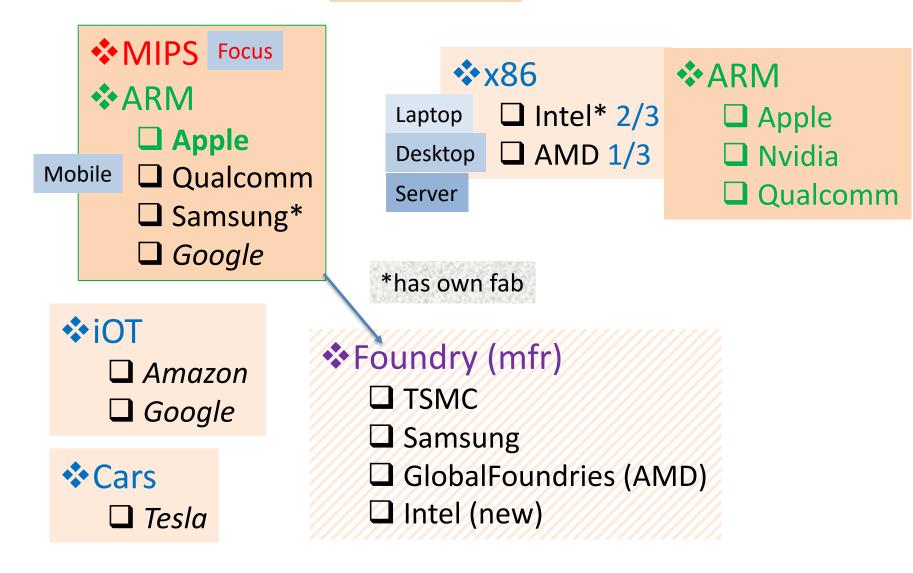

COMP 222 Spring 2023

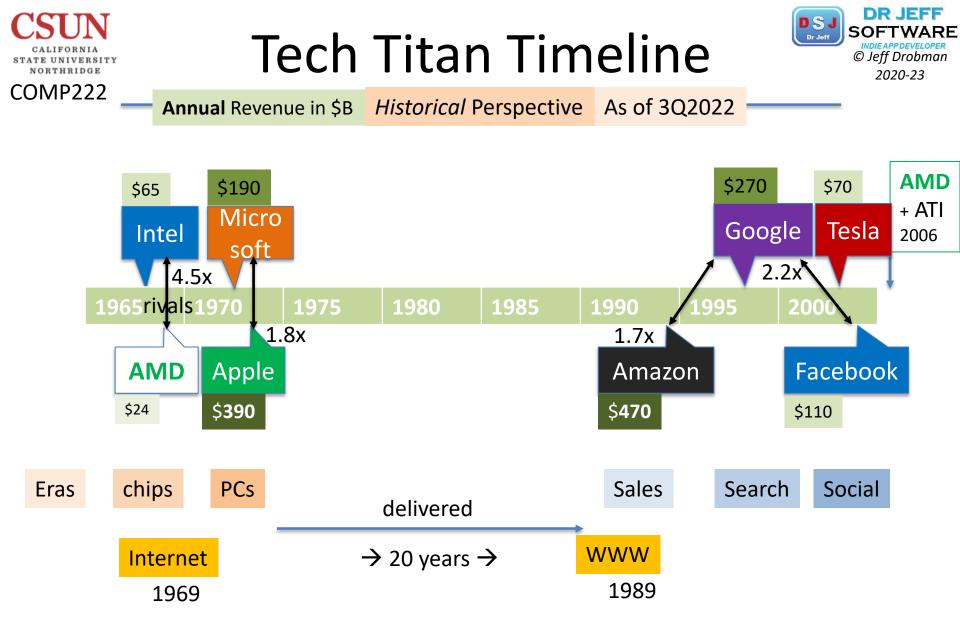
Dr Jeff Drobman

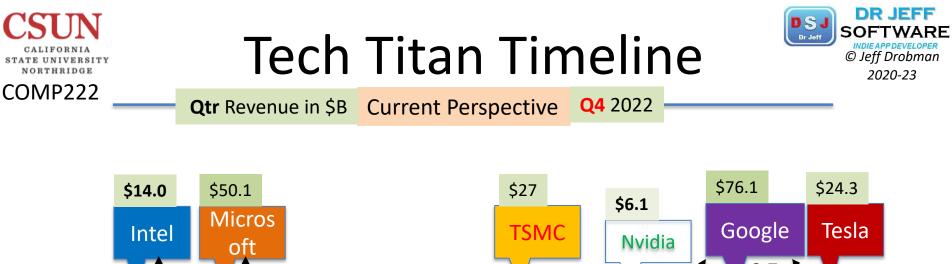
website \Rightarrow <u>drjeffsoftware.com/classroom.html</u>

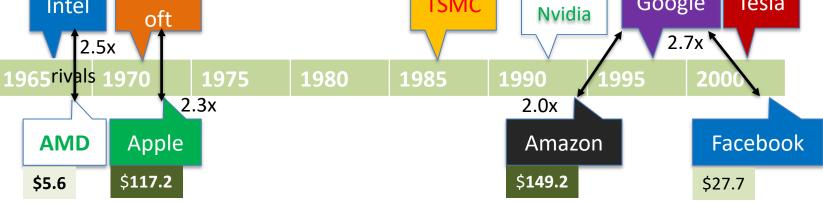
State of the Art \Box Industry Landscape \rightarrow slide 3 \Box x86: AMD \rightarrow slide 10 \Box x86: Intel \rightarrow slide 33 • Apple \rightarrow slide 50 Qualcomm, Samsung \rightarrow slide 77 \Box Fab: TSMC \rightarrow slide 84 \Box Fab: Samsung \rightarrow slide 104 $\Box Memory \rightarrow slide 107$ \Box MCU \rightarrow slide 119 \Box Supercomputers \rightarrow slide 125

State of the Art


Industry Landscape




ISA/SoC Landscape



CPU & GPU Cores

♦ Other Industrials
 ■ GM \$43.1 → 2x Tesla
 ■ Ford \$37.2
 ■ IBM \$16.7 → ~Intel
 ■ QCOM \$9.5
 ■ TI \$4.2
 ■ NXPI \$3.3

Other Services
 Netflix \$8.0
 Visa \$7.9
 PayPal \$7.4

Leading MPU Suppliers (\$B)

2021 Rank	Company	Headquarters	2020	2021	21/20 % Chg	2021 % Marketshare
1	Intel	U.S.	50.6	52.3	3%	50.9%
2	Apple*	U.S.	10.5	13.4	27%	13.0%
3	Qualcomm	U.S.	7.4	9.4	26%	9.1%
4	AMD	U.S.	5.9	9.2	56%	8.9%
5	MediaTek	Taiwan	2.7	4.1	51%	4.0%

*Custom designs for Apple's products that are made by IC foundries. Source: Company reports, IC Insights

CSUN CALIFORNIA STATE UNIVERSITY NORTHRIDGE

Top 10 IC Designers

าาาา								
Table 1: Glo	bal Top Ten	IC Design Company Revenue Rank	ting, 1Q22	(Unit: U	S\$1 Million)			
1Q22 Rank	1Q21 Rank	Company	1Q22 Revenue	1Q21 Revenue	YoY			
1	1	Qualcomm	9,548	6,281	52%			
2	2	NVIDIA	7,904	5,173	53%			
3	3	Broadcom	6,110	4,849	26%			
4 5 5 4		AMD	5,887	3,445	71%			
		MediaTek	5,007	3,805	32%			
6	9	Marvell T	1,412	821	72%			
7	6	Novatek	1,281	929	38%			
8	8	Realtek	1,044	822	27%			
9	-	Will Semiconductor	744	815	-9%			
10	-	Cirrus Logic	490	294	67%			
	7	Xilinx	-	851	-			
- 10		Dialog	-	366	-			
	Т	otal Revenue	39,427	27,342	44%			
	1Q22 Rank 1 2 3 4 5 6 7 8 9	Table 1: Global Top Ten 1Q22 Rank 1Q21 Rank 1 1 2 2 3 3 4 5 5 4 6 9 7 6 8 8 9 - 10 - 7 10	Table 1: Global Top Ten IC Design Company Revenue Rank1Q22 Rank1Q21 RankCompany11Qualcomm22NVIDIA33Broadcom45AMD54MediaTek69Marvell76Novatek88Realtek9-Will Semiconductor10-Cirrus Logic77Xilinx	Table 1: Global Top Ten IC Design Company Revenue Ranking, 1Q22 1Q22 Rank 1Q21 Rank Company 1Q22 Revenue 1 1 Qualcomm 9,548 2 2 NVIDIA 7,904 3 3 Broadcom 6,110 4 5 AMD 5,887 5 4 MediaTek 5,007 6 9 Marveil 1,412 7 6 Novatek 1,281 8 8 Realtek 1,044 9 - Will Semiconductor 744 10 - Cirrus Logic 490 - 10 Dialog -	Table 1: Global Top Ten IC Design Company Revenue Ranking, 1Q22 (Unit: U 1 1 Qualcomm 9,548 6,281 2 2 NVIDIA 7,904 5,173 3 3 Broadcom 6,110 4,849 4 5 AMD 5,887 3,445 5 4 MediaTek 5,007 3,805 6 9 Marvell 1,412 821 7 6 Novatek 1,281 929 8 8 Realtek 1,044 822 9 - Will Semiconductor 744 815 10 - Cirrus Logic 490 294 - 10 Dialog - 366			

Notes

1. This top ten ranking only accounts for companies ahead of public financial reporting.

2.Qualcomm revenue only includes QCT; NVDIA excludes OEM/IP revenue; Broadcom revenue only includes semiconductors; Will Semiconductor revenue only includes semiconductor design and sales.

3. NT\$:US\$ exchange rate: 1Q22 - 28.50:1; 1Q21 - 28.39:1

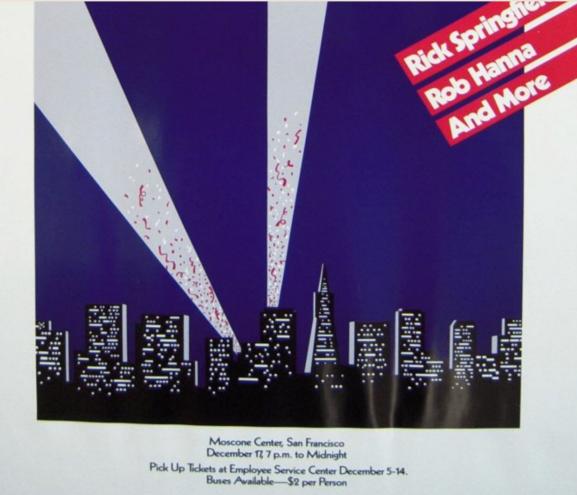
4. RMB:US\$ exchange rate: 1Q22 - 6.336:1; 1Q21 - 6.483:1

Source: TrendForce, Jun. 2022

State of the Art

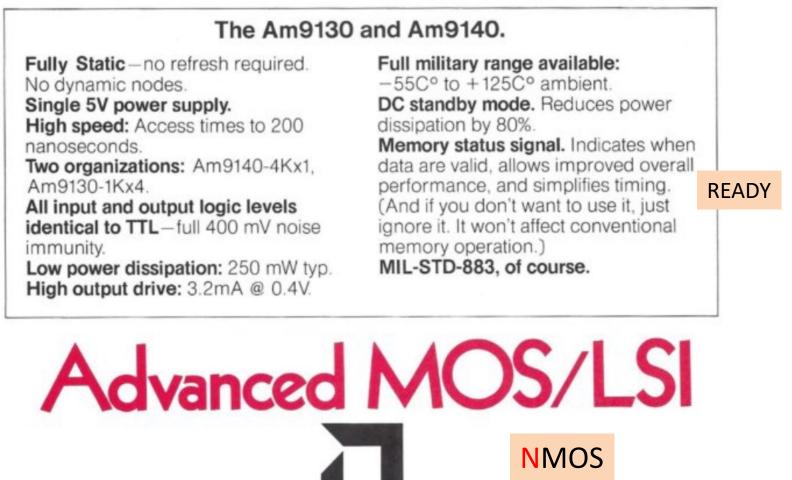
AMD 10-Yr Ad 1979

Ten years ago, Advanced Micro Devices had no products, zero sales and eight of the best people in the business. Today, Advanced Micro Devices has more than 600 products, \$200 million in sales and 8,000 of the best people in the business.

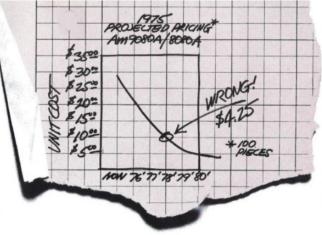

We want more. We want you. You'll work for the nation's fastest growing integrated circuit company. And you'll work with people who really like to win, people who are as good at what they do as you are. Every place has its time. Ours is now. Join Advanced Micro Devices.

> Catch the wave.

\$200M


In 1983 the annual AMD Christmas party was held in to San Francisco's largest convention space, the Moscone Center. These extravaganzas attracted so much TV and press coverage that their cost of half a million dollars or more was justified on the basis of PR impact.

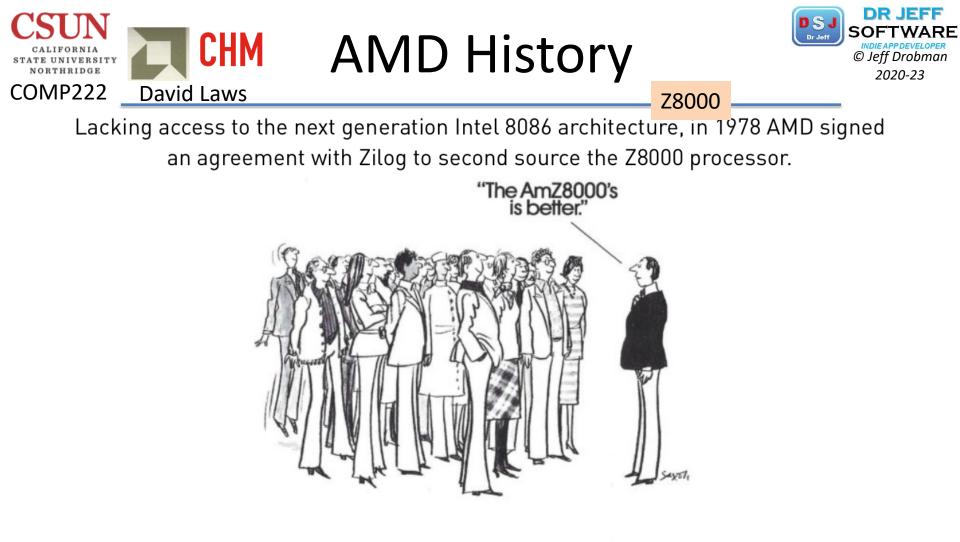
4K SRAM -


Advanced Micro Devices has developed, introduced and is volumeproducing the first family of 4K static RAM's. They're yours now. Off the shelf. Sorry, Intel.

At one-point AMD was selling more units of its improved version of the Intel 8080 microprocessor than the original supplier.

8080A's FOR \$4.25.

Three years ago we predicted our 8080A, the Am9080A, would be \$10 each in 1978.


It's not. It's \$4.25?

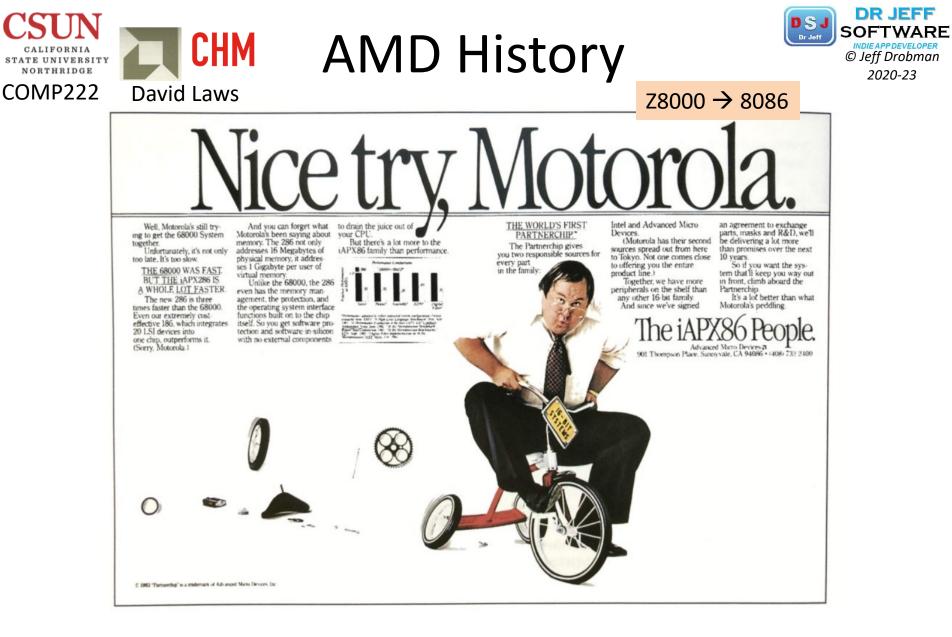
And we're talking about the best 8080A you can buy. The one with the best power, speed and reliability records in the business. (The only one that's MIL-STD-883-forfree.)

And we didn't stop there. The Am9080A has an entire family of equally terrific, equally MIL-STD-883-for-free support and peripheral circuits to /ith it. Am9080A's for \$4.25. How do you like that? The best part in the business at the best price in town.

901 Thompson Place, Sunnyvale, California 94086 Telephone (408) 732-2400

powerful instructions. It can even accommodate more data types. And the AmZ8000 has a lot higher throughput using standard NMOS than the 8086 using HMOS.

To demonstrate the capability of the AmZ8000, we developed a fully assembled and tested Evaluation Board with a memory, an I/O and a monitor. Ask for it by name: AMC 96/4016. You can also get a full ASCII keyboard/display and an assembler.


One last thing: we know it hurts to drop

Intel for somebody else. We went through it ourselves. But it's going to hurt a lot more next year. By then, your competitors could be so far ahead of you, you might never catch up.

Call Advanced Micro Devices. We'll send you all the latest information on the AmZ8000, System 8/8 and the AMC 96/4016. Or, we'll line you up for our next 4-day seminar.

When you've looked at all the facts, one fact is going to come through loud and clear: The AmZ8000 is better.

By 1983, AMD had dropped the Z8000 architecture in favor of an agreement with Intel to produce the 8086/8088 family for the IBM PC. The competitor for new designs was now the Motorola 68000.

ACKNOWLEDGEMENTS

David Laws

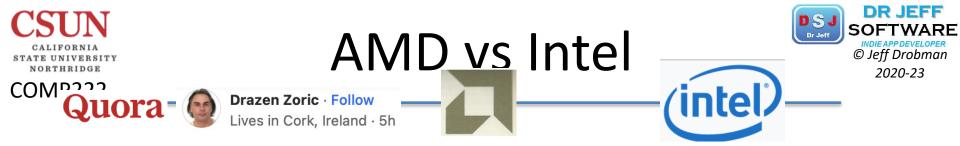
In full disclosure: Beginning in 1975, the author spent 12 of the most rewarding years of his professional life at AMD in roles from marketing manager to vice president of business development. Thank you, Jerry Sanders for creating an extraordinary place to work and grow. To Steve Zelencik for his many years of mentoring and support and also for donating his collection of AMD advertisements, several of which are used in this article, and other documents to the Computer History Museum (CHM). And to John Springer, keeper of the FLAMES website and archive for Former Loyal Advanced Micro Employees.

AMD vs Intel: CPU Families

		(intel)
Market Segment	AMD	Intel
Desktop	Ryzen 3/5/7K	Core i5/i7/i9 (13 th gen)
Laptop	Ryzen 4000	Ice Lake
Gaming	Ryzen Threadripper +Radeon	Core Extreme
Server/Workstn	Ерус	Xeon

According to the company, the AMD Ryzen 4700 G series desktop processor offers up to 2.5x multi-threaded performance compared to the previous generation, up to 5% greater single-thread performance than the Intel Core i7-9700, up to 31% greater multithreaded performance than the Intel Core i7-9700, and up to 202% better graphics performance than the Intel Core i7-9700.

AMD Chiplets


Improved Yield and Lower Costs

To me the single stroke of genius came in the form of using 7nm CCX chiplets (of 74mm² in size) on the same package as the 14nm I/O die for huge increases in yield per wafer.

- Perfect 8-core CCX chips went to the 3700X, 3800X, and 3950X
- Flawed chips (with 6 good cores) ended up in the 3600, 3600X, and 3900X
- Chiplets with multiple failure points ended up as quad cores in 3100 and 3300X

MCM socket

Overall x86 CPU Share (ALL CPUs)

Overall x86 CPU Share	2022 Q1	2021 Q4	2021 Q1
Includes IoT and SoC	Current Quarter	Prior Quarter	Year Ago Quarter
	Share	Share	Share
Intel	72.3%	74.4%	79.3%
AMD	27.7%	25.6%	20.7%
VIA	0.0%	0.0%	0.0%
Total	100.0%	100.0%	100%

AMD vs Intel

intel

Drazen Zoric · Follow Lives in Cork, Ireland · 5h

Server CPU Share excluding IoT

Quora-

STATE UNIVERSITY NORTHRIDGE

COM

Server CPU Share	2022 Q1	2021 Q4	2021 Q1	Share	Share	
Current Qu	uarter	Prior Quarter	Year Ago Quarter	Change (points)	Change (points)	
	Share	Share	Share	Quarter	Year	
Intel	88.4%	89.3%	91.1%	- 0.9	- 2.7	
AMD	11.6%	10.7%	8.9%	+ 0.9	+ 2.7	
Total	100.0%	100.0%	100.0%			

Desktop CPU Share excluding IoT

Desktop PC CPU Share	2022 Q1	2021 Q4	2021 Q1	Share	Share
Current Quar	ter	Prior Quarter 1	rear Ago Quarter	Change (points)	Change (points)
	Share	Share	Share	Quarter	Year
Intel	81.7%	83.8%	80.6%	- 2.1	+ 1.1
AMD	18.3%	16.2%	19.3%	+ 2.1	- 1.0
VIA	0.0%	0.0%	0.1%	+ 0.0	- 0.0
Total	100.0%	100.0%	100.0%		

CALIFORNIA STATE UNIVERSITY NORTHRIDGE	ora - 🙆 Drazer	n Zoric · Follow n Cork, Ireland ·		s Inte	int	DR JEFF SOFTWARE INDIE APPDEVELOPER © Jeff Drobman 2020-23	
	Mobile CPU Share	2022 Q1	2021 Q4	2021 Q1	Share	Share	
	Current Qu	arter	Prior Quarter	Year Ago Quarter	Change (points)	Change (points)	
		Share	Share	Share	Quarter	Year	
	Intel	77.5%	78.4%	82.0%	- 0.9	- 4.4	
	AMD	22.5%	21.6%	18.0%	+ 0.9	+ 4.4	
	Total	100.0%	100.0%	100.0%			

Yeah, Intel lost 2 - 7% but still sells 4 - 8 times more CPUs. AMD will never be able to close this gap. Things in Intel changed with 12th gen when they have again fastest CPUs. AMD Zen4 might take a lead but in few months 13th gen is out which will be better. I saw ridiculous AMD Zen4 pricing, insane \$800 for 7950X. If Intel lowers 13900 it will regain share.

Next year when Intel switches to HA EUV, 14th gen, it will have also better laptop CPUs which will be lower power.

Question is what is going on with Sapphire Rapids. It has 12 respins and still some 500 bugs. AMD already released Epyc Genoa with 96 cores what will threaten Intel in server and already did in supercomputer segments.

AMD News

FROM A MODEST BEGINNING TO LEADING THE WORLD, OUR LEGACY CONTINUES

Industry News:

- <u>AMD</u> announced it has completed Class B qualification for the company's first spacegrade Versal adaptive SoCs, allowing the devices to begin shipping in early 2023. The announcement saw coverage in <u>The Register</u>, <u>SiliconANGLE</u>, <u>HPCWire</u> and others.
- AMD <u>showcased</u> its momentum in high performance computing and latest wins on the <u>Top500</u> and <u>Green500</u> lists, as part of SC22. <u>Tom's Hardware</u>, <u>The Next Platform</u>, <u>HotHardware</u> and many others covered the news.
- <u>PC Gamer</u>, <u>Tom's Hardware</u> and <u>Digital Trends</u> shared articles following various events at the "together we advance_gaming" event in Las Vegas.


Zen 4 Benchmark

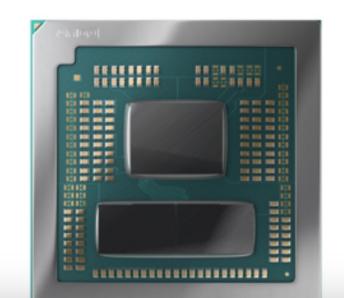
• Multi-threaded - here Ryzen leads cause it has more cores

ATE UNIVERSITY NORTHRIDGE

COMP222

Zen 4 is 50% better than Zen 3

Jan 2023

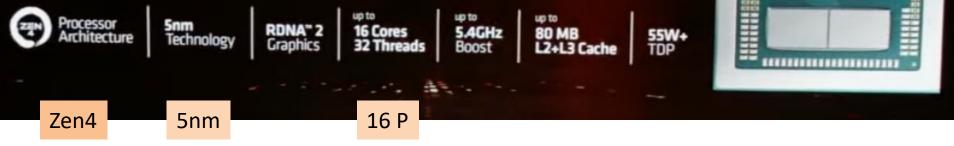


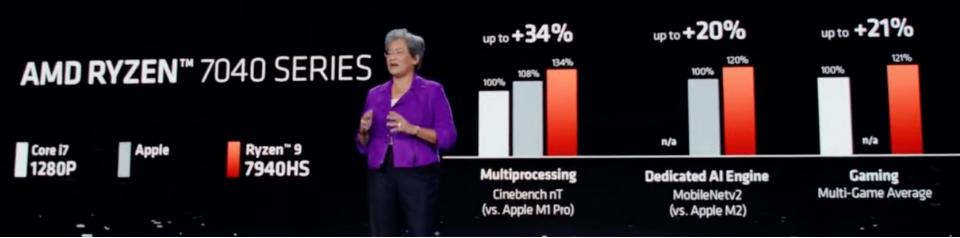
Jan 2023

AMD's new Ryzen 7000 mobile processors include a massive 16-core chip

Story by Monica Chin • Yesterday 7:30 PM ろ つ Comments

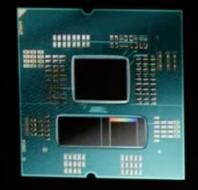
This may seem like an underdog compared to Intel's top 13th-Gen chips, which have 24 cores — Intel has claimed that its Core i9-13980HX is the "world's fastest mobile processor". This chip, however, only has eight performance cores and 16 efficiency cores, while all 16 of the Ryzen's will be going full-speed ahead. This is essentially two full eight-core chips stuffed into one.





HEI

Jan 2023


Announcing AMD RYZEN™ 7045HX SERIES

Announcing AMD RYZEN™ 9 7950X3D

Ultimate processor for gamers and creators

Announcing AMD RADEON™ RX 7600M XT

32 RDNA" 3 8 GB Compute Units GDDR6

RDNA3

32 CU

128-Bit 75-120W Memory Bus TDP

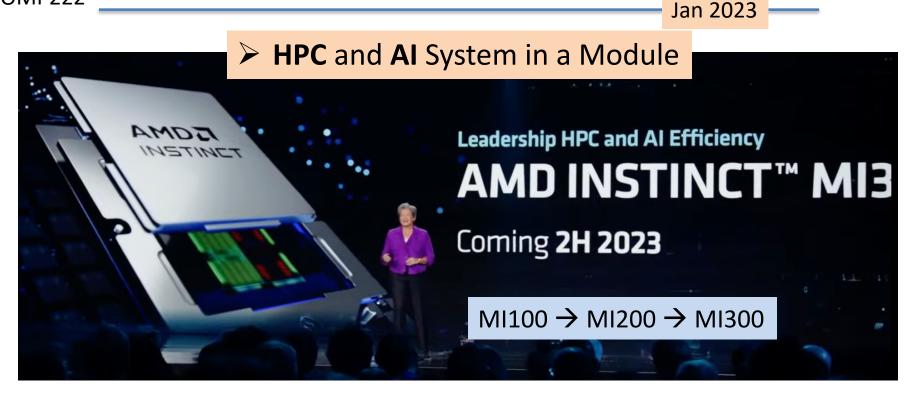
6nm Process Technology

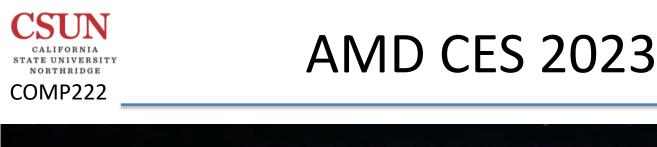
1

Jan 2023

75W TOP

Jan 2023




ORTHRIDGE

COMP222

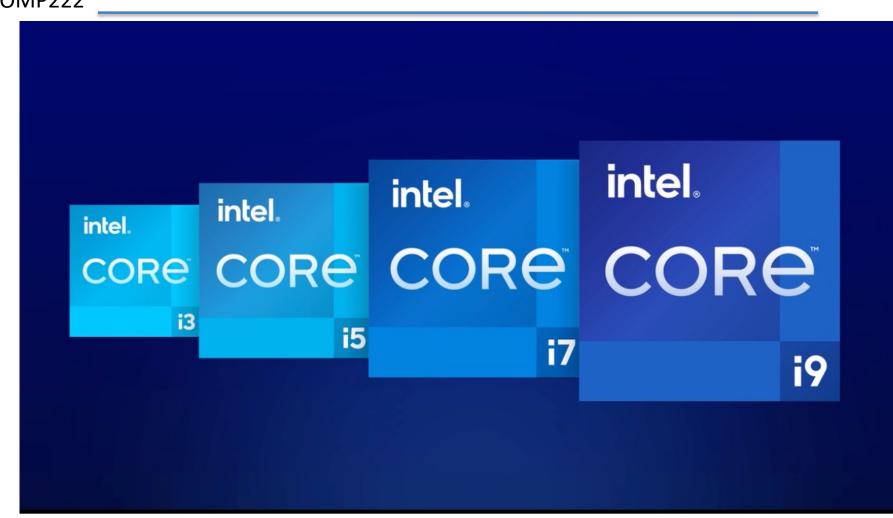
Used in latest top supercomputer (Frontier)

DR JEFF SOFTWARE NDIE APP DEVELOPER © Jeff Drobman 2020-23

Jan 2023

World's first data center integrated CPU + GPU

State of the Art


CSUN CALIFORTING STAFFORM NORTHRIDGE NORTHRIDGE CALIFORTING SOFTWARE SOFTWARE SOFTWARE NORTHRIDGE NORTHRIDGE SOFTWARE SOFTWARE NORTHRIDGE NORTHRIDGE SOFTWARE SO

Intel Core i Family

CSUN CALIFORNIA STATE UNIVERSITY NORTHRIDGE COMP222

13th Gen Intel® Core[™] Unloci

Processor Number	Processor Cores (P+E)	Processor Threads	Intel ^a Smart Cache (L3)	Total L2 Cache	P-core Max Turbo Frequency (GHz)	E-core Max Turbo Frequency (GHz)	P-core Base Frequency (GHz)	E-core Base Frequency (GHz)
i9-13900K	24 (8+16)	32	36MB	32MB	Up to 5.8	Up to 4.3	3.0	2.2
19-13900KF	24 (8+16)	32	36MB	32MB	Up to 5.8	Up to 4.3	3.0	2.2
17-13700K	16 (8+8)	24	30MB	24MB	Up to 5.4	Up to 4.2	3.4	2.5
i7-13700KF	16 (8+8)	24	30MB	24MB	Up to 5.4	Up to 4.2	3.4	2.5
i5-13600K	14(6+8)	20	24MB	20MB	Up to 5.1	Up to 3.9	3.5	2.6
15-13600KF	14(6+8)	20	24MB	20MB	Up to 5.1	Up to 3.9	3.5	2.6

CSUN CALIFORNIA STATE UNIVERSITY NORTHRIDGE COMP222

Oct 2022 -

Desktop Processors

Processor Graphics	Total CPU PCIe Lanes	Max Memory Speed (MT/S)	Memory Capacity	Processor Base Power (W)	Max Turbo Power (W)	RCP (USD)
Intel® UHD Graphics 770	20	DDR5 5600 DDR4 3200	128GB	125	253	\$589
n/a	20	DDR5 5600 DDR4 3200	128GB	125	253	\$564
Intel® UHD Graphics 770	20	DDR5 5600 DDR4 3200	128GB	125	253	\$409
n/a	20	DDR5 5600 DDR4 3200	128GB	125	253	\$384
Intel® UHD Graphics 770	20	DDR5 5600 DDR4 3200	128GB	125	181	\$319
n/a	20	DDR5 5600 DDR4 3200	128GB	125	181	\$294

Nov 2022

4th Gen Intel® Xeon® Scalable processors

COMP222

AMX

4th Gen Intel[®] Xeon[®] Scalable processors will include a built-in accelerator dedicated to the matrix multiplication at the heart of deep learning workloads.

Intel® Advanced Matrix Extensions (Intel® AMX) combines a new instruction set that turns large matrices into a single operation with two-dimensional register files that store larger chunks of data for each core.

Al acceleration on 3rd Gen Intel® Xeon® Scalable processors

- Up to 1.74x higher INT8 batch inference throughput on BERT-Lasge SQuAD with Intel® DL Boost on 3rd Gen Intel® Xeon® Scalable processors vs. prior generation.¹
- Up to 1.59x higher INT8 real-time inference throughput with Intel[®] DL Boost on 3rd Gen Intel Xeon Scalable processors vs. prior generation.²
- Up to 4.5x more images per second at INT8³ and up to 6x more images per second at BF16⁴ object detection (SSD-ResNet-34) using Intel[®] AMX on upcoming 4th Gen Intel[®]

Intel Xeon	4 th	Gen
------------	-----------------	-----

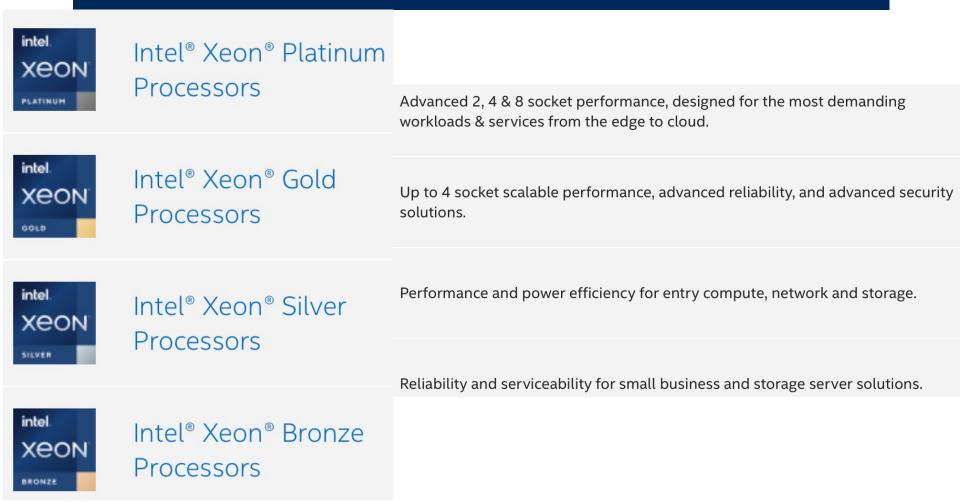
TNT

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

COMP222

Jan 2023

intel. XEON [®] PLATINUM	Intel® Xeon® Scalable Processors	Intel® Xeon® Scalable processor family delivers unparalleled scale and performance for compute, storage, network, security.
intel. Xeon	Intel [®] Xeon [®] Processors	Built for data centers and workstations to handle the heavy processing demands of cloud, big data, modeling, AI, and more.
intel. COR C i9	Intel [®] Core [™] Processors	Intel's highest-performance CPUs for laptops and desktops, delivering advanced responsiveness, connectivity and graphics.
	Intel [®] Processor	Intel's entry level CPUs provide the performance that you need with the affordability you want to connect, learn, and play anywhere.
intel ATOM	Intel Atom [®] Processor	These small, powerful CPUs are ideal for mobile and IoT devices as well as high- density, low-energy data center applications.
	Processors for IoT and Embedded Applications	For swift deployment of edge applications, see Intel's portfolio of edge-ready compute and connectivity technologies.


Intel Xeon 4th Gen

Jan 2023

Intel[®] Xeon[®] Scalable Processors

4th Gen Intel[®] Xeon[®] Scalable processors feature built-in accelerators and advanced security technologies for the most in-demand workload requirements — all while offering the greatest cloud choice and application portability.

Intel Xeon 4th Gen

Jan 2023 🗧

Intel[®] Xeon[®] Platinum Processor

4th Gen Intel[®] Xeon[®] Scalable processors feature built-in accelerators and advanced security technologies designed over decades of innovation for the most in-demand workload requirements—all while offering the greatest cloud choice and application portability.

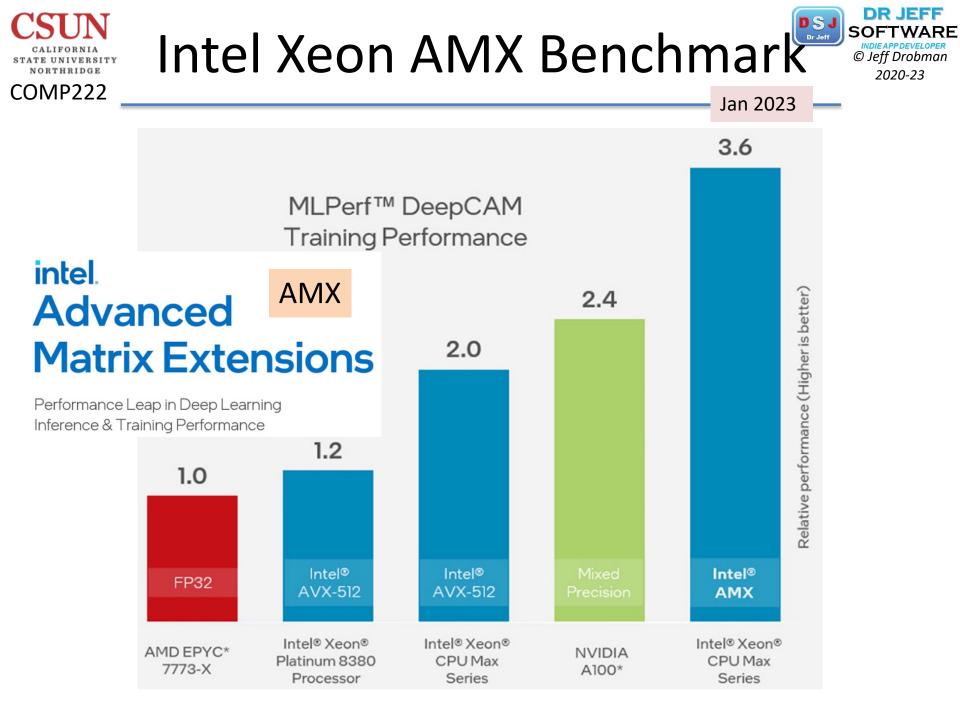
Built-in Intel Accelerator Engines for Performance and Security

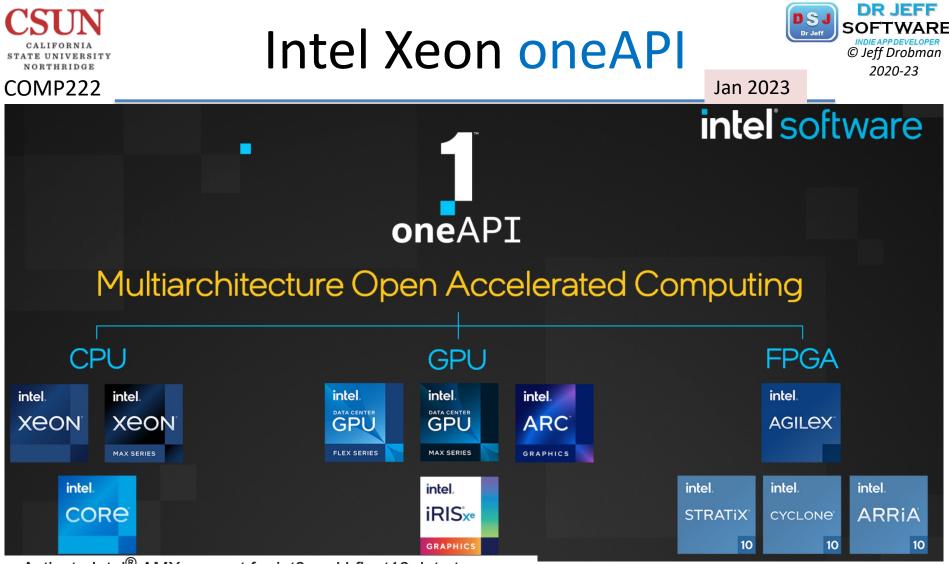
AMX Intel® Advanced Matrix Extensions

Intel® AMX is Intel's next-generation advancement for deep-learning training and inference on 4th Gen Intel® Xeon® Scalable processors.

Intel[®] Software Guard Extensions

Intel[®] SGX helps protect data in use via unique application-isolation technology.


Learn more


Intel[®] Advanced Vector Extensions 512 AVX-512

Intel® AVX-512 is purpose-built to accelerate performance for the most demanding computational workloads in science, business and beyond.

See All Accelerator Engines

Intel® Accelerator Engines are integrated accelerators on Intel® Xeon® Scalable processors that are purpose-built to deliver performance and power efficiency advantages across today's fastestgrowing workloads.¹

- Activate Intel[®] AMX support for int8 and bfloat16 data types using oneAPI performance libraries such as oneDNN, oneDAL, and oneCCL.
- Drive orders of magnitude for training and inference into TensorFlow and PyTorch AI frameworks which are powered by oneAPI and already optimized to enable Intel AMX.
- Activate the hardware's innovative features—Intel[®] X^e Matrix Extensions, vector engine, Intel[®] X^e Link, data type flexibility, and more—and realize maximum performance using oneAPI and AI Tools.
 - Migrate CUDA code to SYCL for easy portability across multiple architectures—the new GPU as well as those from other vendors—with code migration tools to simplify the process.

Intel Fabs

. . .

Can I say Intel has overcome TSMC now, because the 13th CPU is better than the AMD 7000 series?

OBTHRIDGE

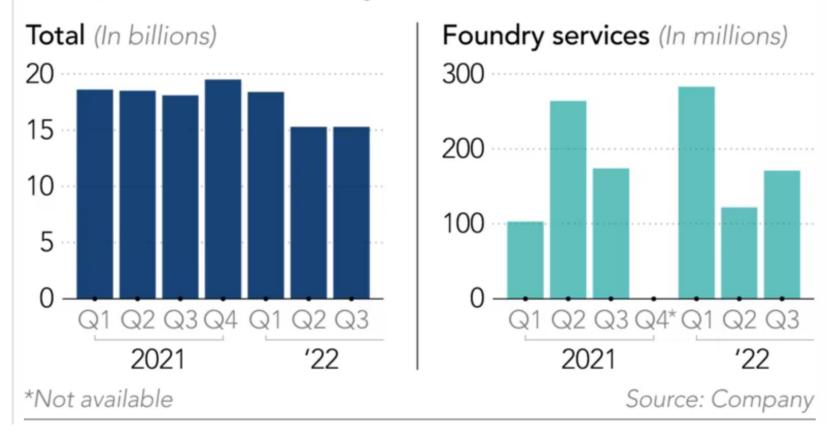
COMP222

Jeff Drobman

Quora

Works at Dr Jeff Software \cdot Just now \cdot \circledast

NO! Both Intel and AMD are using the same TSMC 5nm process for their high end CPU's, and will move to TSMC 3e next. Intel is still behind TSMC by 1–2 generations, so they offer their inferior fabs to others in a foundry model.

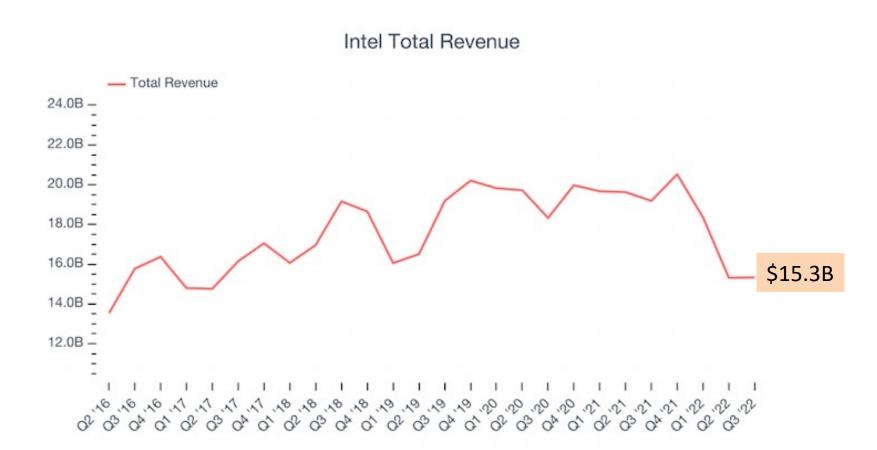


COMP222

Intel's total and foundry-related revenue (In dollars)

Intel's Foundry Biz (IFS)

The company's spending in this area includes \$20 billion for a chip facility in Ohio and 17 billion euros (\$16.8 billion) to build a plant in Germany, as well as \$3.5 billion to expand its chip packaging facility in New Mexico, a \$20 billion investment in Arizona fabs and a 17 billion euro expansion in Ireland. On top of that, Intel acquired Israeli foundry Tower Semiconductor for \$5.4 billion in February.


Meanwhile, slowing global demand for chips has weighed on Intel's top line. The company reported a 20% year-over-year drop in third-quarter revenue last week, and lowered its 2022 full-year revenue outlook to between \$63 billion and \$64 billion, down as much as \$4 billion from its previous guidance. Coupled with the heavy spending on its foundry business, Intel is now expecting to end 2022 with a negative \$2 billion to \$4 billion free cash flow, compared to the negative \$1 billion to \$2 billion it projected earlier this year.

Intel Revenue

ATE UNIVERSITY NORTHRIDGE

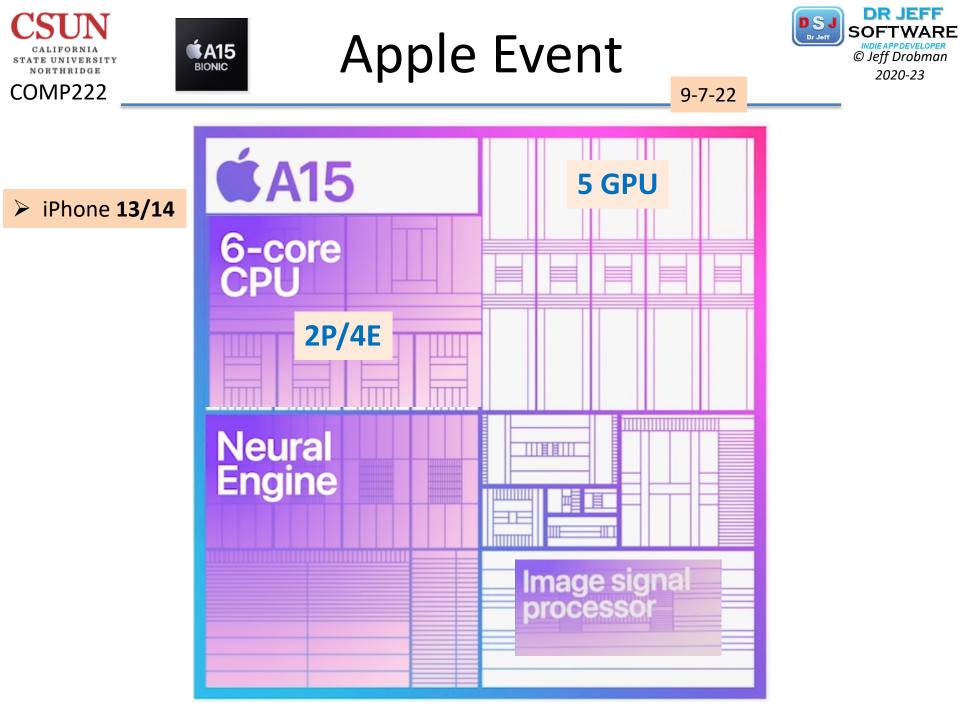
COMP222

Reports 3Q22

3Q (\$B) ◆Tesla = \$21.5 ◆TSMC = \$20.23 ◆IBM = \$14.1

2Q (\$B)


- Amazon = \$121.2
- ✤ Apple = \$83.0
- ✤ Google = \$69.7
- Microsoft = \$51.9
- ✤ Intel = \$15.3
- ✤ Nvidia = \$6.7
- ✤ AMD = \$6.6



State of the Art

Apple M1/2 for Mac

MP222 — Why did Apple stop using Intel? Quora

Jeff Drobman, Lecturer at California State University, Northridge (2016-present) Answered just now

- 1. Intel had fallen behind in process nodes to the point where AMD was beating them by using 7nm at TSMC. Apple did not want to wait for Intel to catch up.
- 2. Apple wants control over their ISA's and architecture, and more control over their CPU ship supply.
- 3. Apple wants to unify their ISA's and architecture and thereby enable use of a single OS (MacOS will converge with iOS).

Mac M1/2 vs Core i7/9

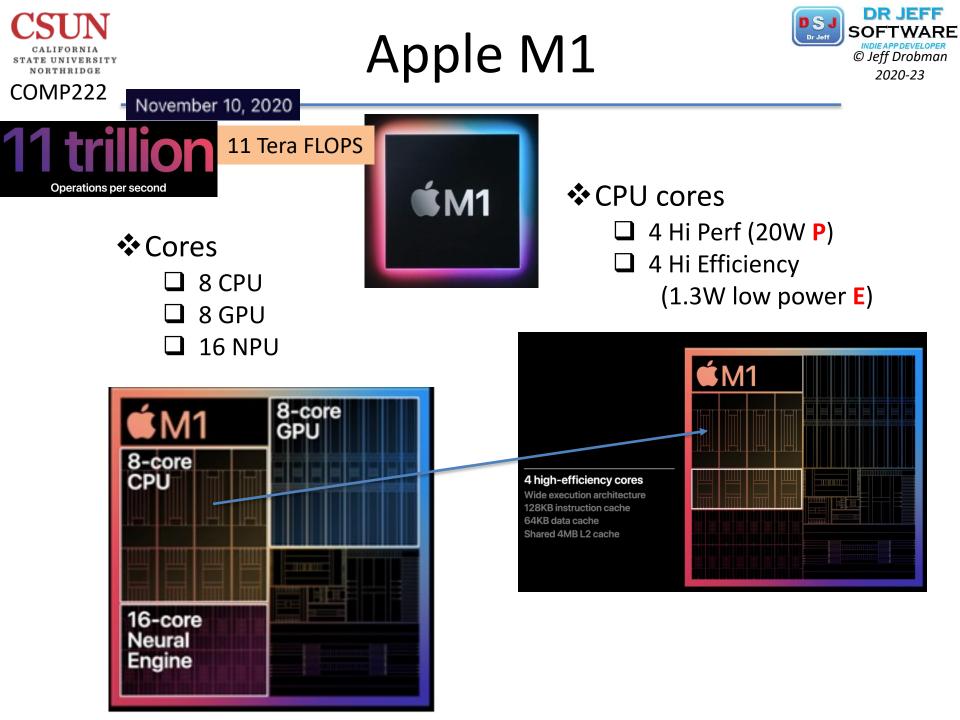
What is the difference between the processor in a Mac and a PC with an equivalent CPU model?

Jeff Drobman

Lecturer at California State University, Northridge (2016–present) \cdot Just now \cdot (\$)

Win PC's use x86 CPU chips from Intel (Core i7/i9) or AMD (Ryzen 5/7/9), with or without integrated graphics GPU cores. Macs used to also use these same chips, but now use Apple designed M1/2 SoC's with CPU and GPU cores (and NPU cores with ML accelerators). In a Mac, I suspect the AI support is mostly for its "Siri" assistant, but might be usable by some gaming software.

Apple ARM ISA

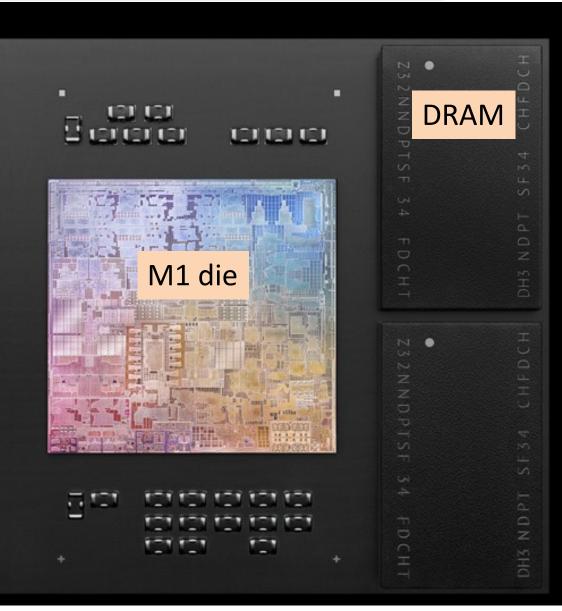

What is the latest version of the Advanced RISC Machine ... (ARM) architecture?

Jeff Drobman

Lecturer at California State University, Northridge (2016–present) \cdot Just now \cdot (\$)

ARM has 3 families of architecture: A, R and M. they each have minute differences in their "micro" architecture (including multi-threading). but there are now only 2 basic ISA: 32-bit v7 and 64-bit v8. Licensees such as Apple have created their own ISA extensions, which are called v8.1, v8.2 etc.

Apple M1 Module



5-nanometer process

The first personal computer chip built with this cutting-edge technology.

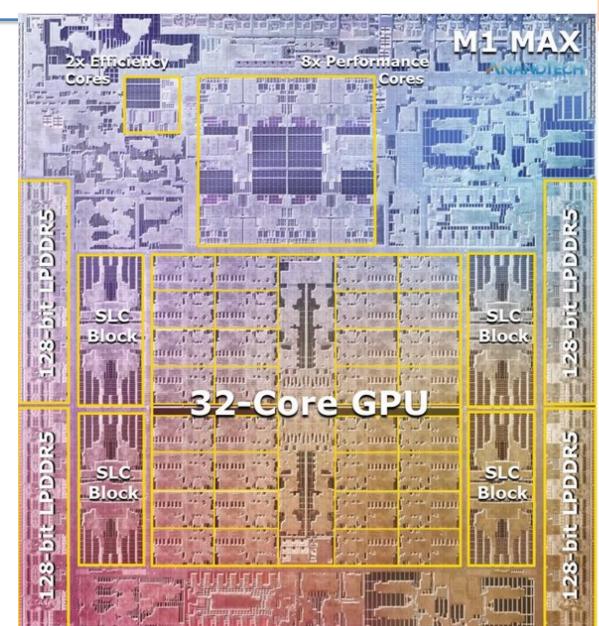
16 billion transistors

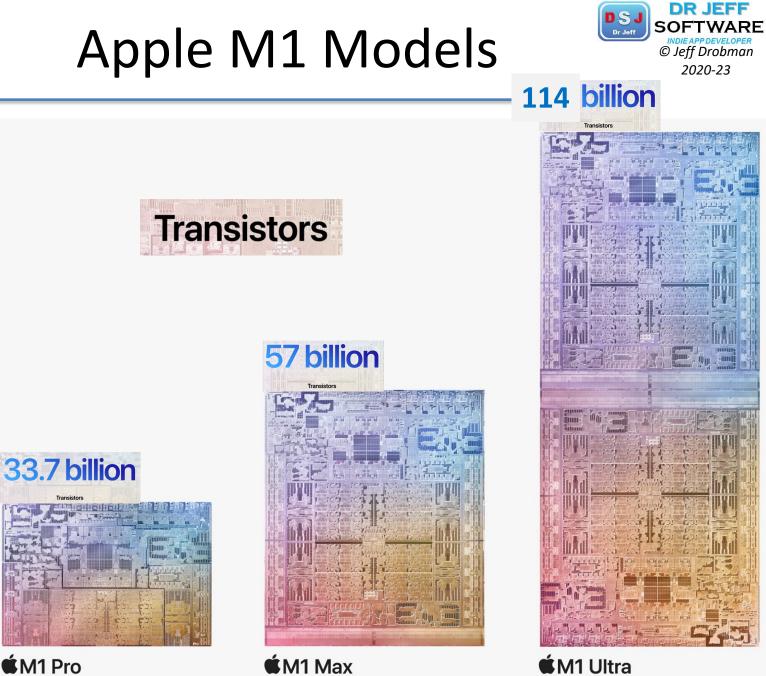
The most we've ever put into a single chip.

Apple M1 Max Die

DR JEFF

SOFTWARE


© Jeff Drobman


2020-23

Dr Jeff

Annotated

ŚМ1

ALIFORNIA STATE UNIVERSITY NORTHRIDGE

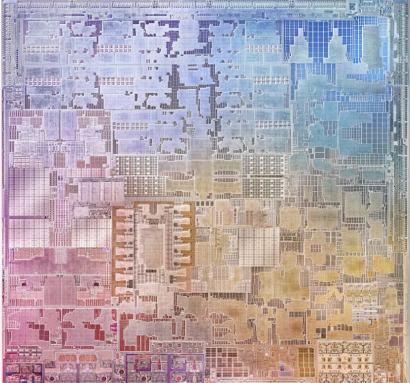
COMP222

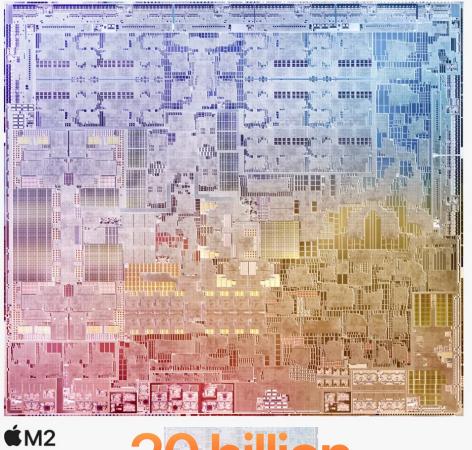
M1 Pro

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

COMP222

Jan 17, 2023





June 6, 2022

Second-generation 5 nanometer

ÉM1

NORTHRIDGE

COMP222

Transistors

Apple M2

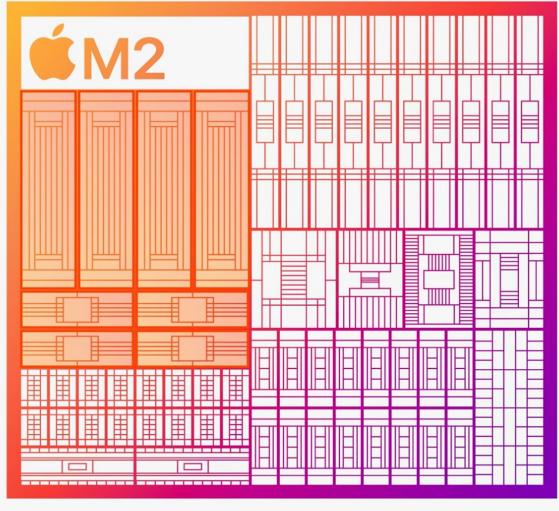
June 6, 2022

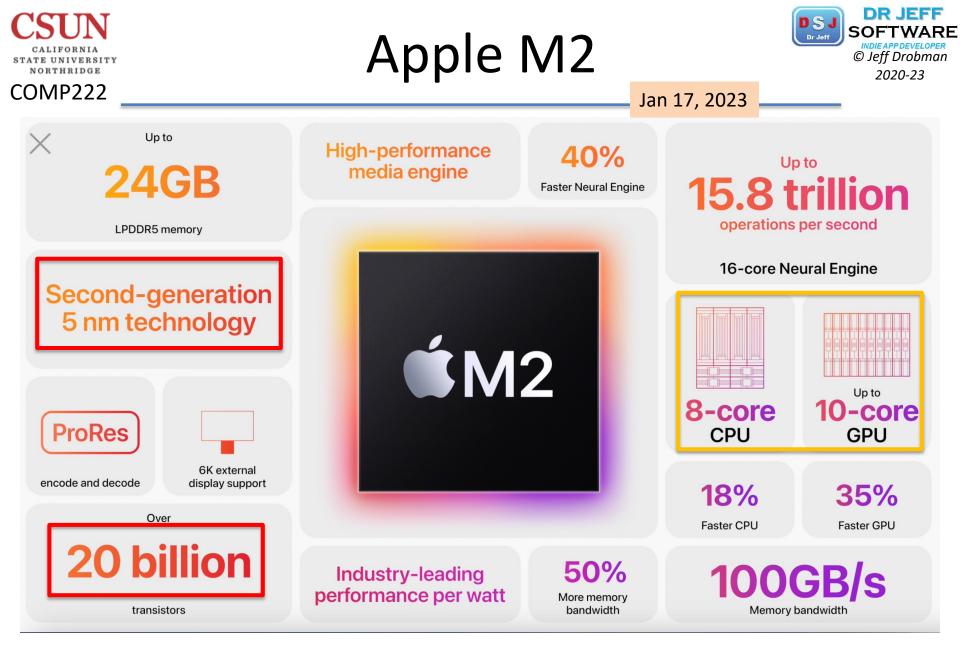
10 GPU cores

8-core CPU P

4 high-performance cores

Ultrawide microarchitecture 192KB instruction cache 128KB data cache Shared 16MB cache

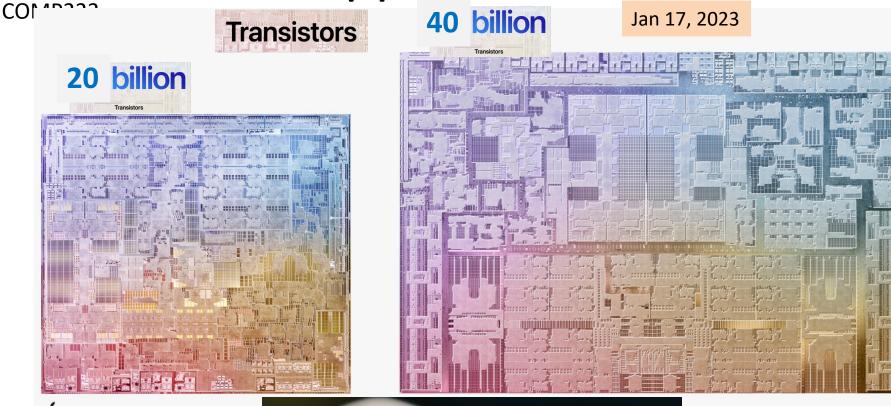

NORTHRIDGE


COMP222

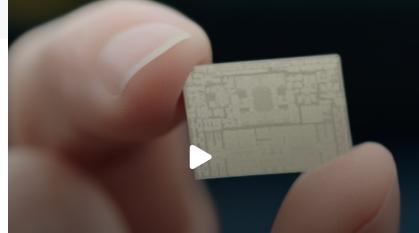
4 high-efficiency cores

F

Wide microarchitecture 128KB instruction cache 64KB data cache Shared 4MB cache

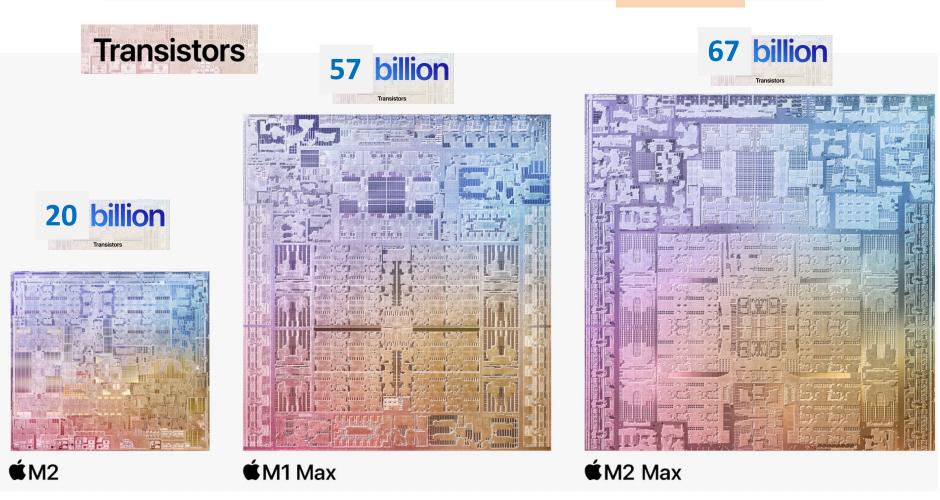


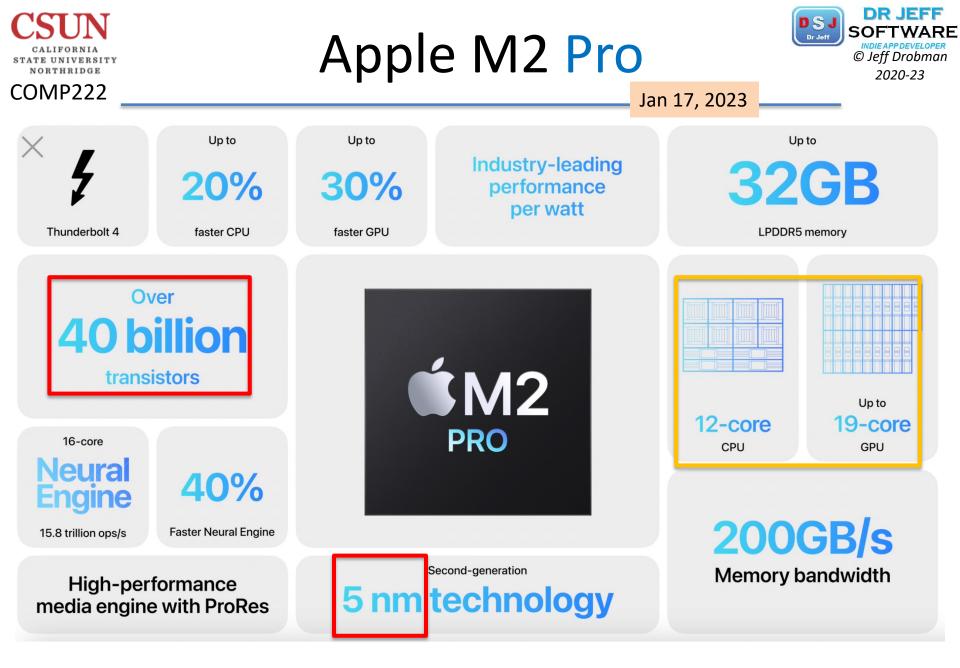
Apple M2 Pro

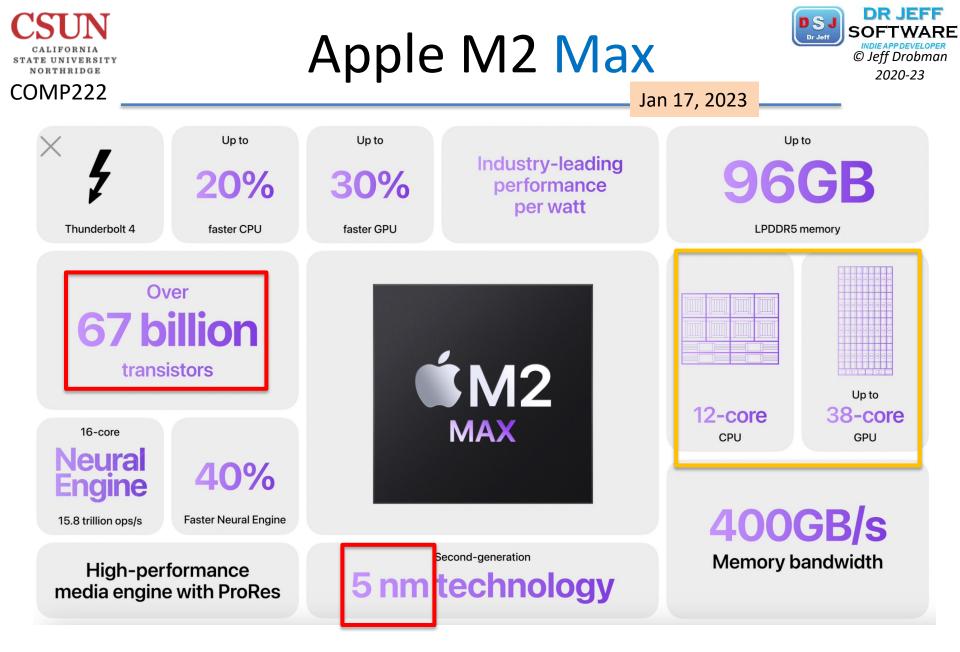


STATE UNIVERSITY

NORTHRIDGE


Apple M2 Max


STATE UNIVERSITY NORTHRIDGE

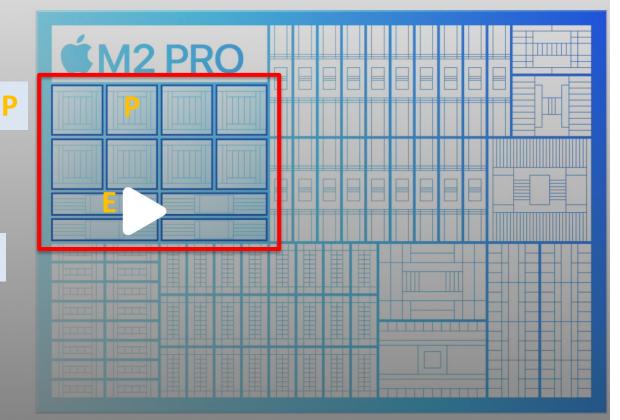

COMP222

Jan 17, 2023

Apple M2 Pro

8 high-performance cores

STATE UNIVERSITY NORTHRIDGE


COMP222

Ultrawide execution microarchitecture 192KB instruction cache 128KB data cache 32MB L2 cache

4 high-efficiency cores

E

Wide execution microarchitecture 128KB instruction cache 64KB data cache 4MB L2 cache

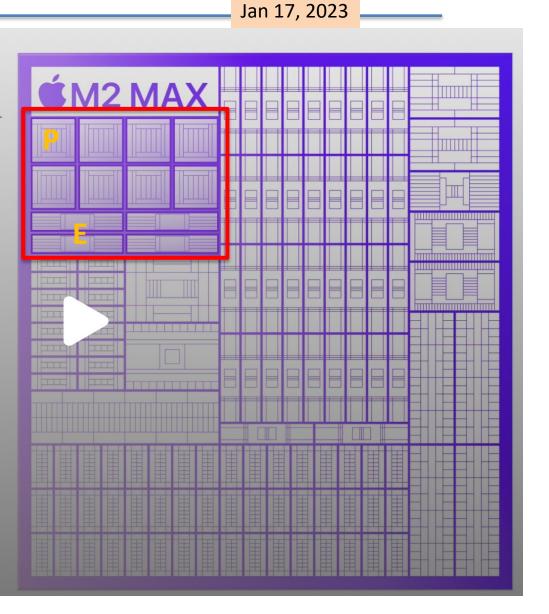
Jan 17, 2023

Apple M2 Max

(same)

8 high-performance cores P

STATE UNIVERSITY NORTHRIDGE


COMP222

Ultrawide execution microarchitecture 192KB instruction cache 128KB data cache 32MB L2 cache

Ε

4 high-efficiency cores

Wide execution microarchitecture 128KB instruction cache 64KB data cache 4MB L2 cache

Apple M2 Pro

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

COMP222

Jan 17, 2023

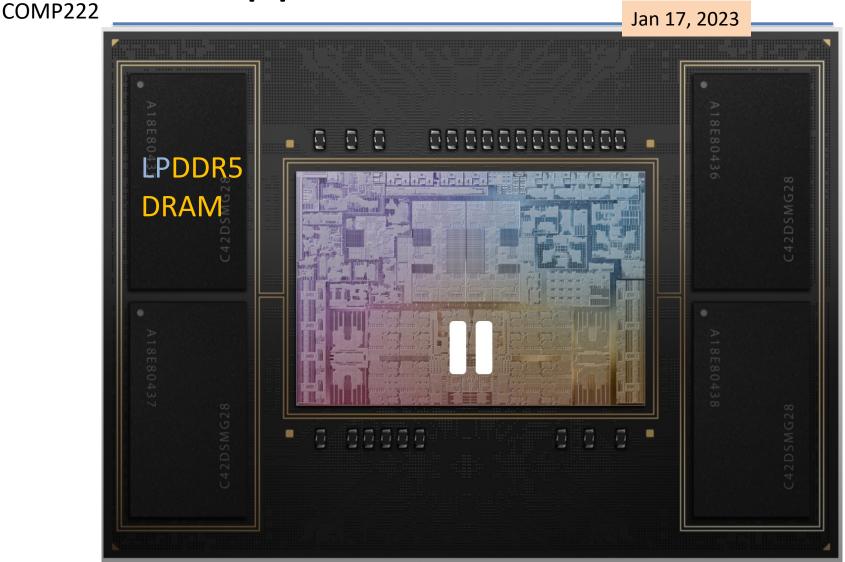
Apple M2 Max

Jan 17, 2023

38-core GPU

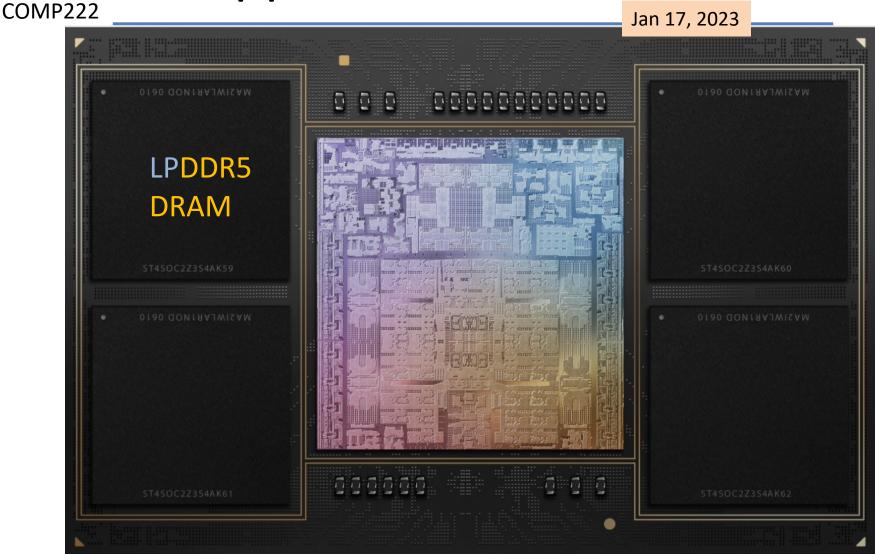
4,864 execution units 13.6 teraflops 424 gigatexels/second 212 gigapixels/second

2X Pro


Ś М2МАХ			

STATE UNIVERSITY NORTHRIDGE

COMP222


32GB unified memory

STATE UNIVERSITY NORTHRIDGE

200GB/s memory bandwidth

Apple M2 Max Module

96GB unified memory

NORTHRIDGE

400GB/s memory bandwidth

```
Apple Xcode/Swift
                                                                                      © Jeff Drobman
                                                                                        2020-23
COMP222
                                                               Jan 17, 2023
               renderer.c_axiom_solver.setSourceDensity(Float32(sender.value));
           }
           @IBAction func sliderTemperature(_ sender: UISlider) {
               renderer.c_axiom_solver.setSourceTemperature(Float32(sender.value));
           }
           @IBAction func sliderBuoyancy(_ sender: UISlider) {
               renderer.c_axiom_solver.setBuoyancy(Float32(sender.value))
           }
           @IBAction func sliderBuoyancy(_ sender: UISlider) {
               renderer.c_axiom_solver.setBuoyancy(Float32(sender.value))
           }
           override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {
               for touch in touches {
                   allTouches.append(touch)
```


Apple Xcode/Swift

Jan 17, 2023

textureDescriptor_screenSelection_depth.usage = MTLTextureUsage.unknown textureDescriptor_screenSelection_depth.pixelFormat = MTLPixelFormat.depth32Float_stencil8 textureDescriptor_screenSelection_depth.storageMode = .private textureDescriptor_screenSelection_depth.width = 254 textureDescriptor_screenSelection_depth.height = 256 self.c axiom texture screenSelection depth = self.device.makeTexture(descriptor: textureDescriptor_screenSelection_depth)! self.c_axiom_buffer_screenSelection = self.device.makeBuffer(length: MemoryLayout<Float>.size * textureDescriptor_screenSelection_depth.width * textureDescriptor_screenSelection_depth.height, options: [.storageModeShared]) self.c_axiom_renderPassDescriptor_screenSelection = MTLRenderPassDescriptor() self.c_axiom_renderPassDescriptor_screenSelection.col achments[0].texture = **self**.c_axiom_texture_screenSelection self.c_axiom_renderPassDescriptor_screenSelection.depthAttachment.texture = self.c_axiom_texture_screenSelection_depth self.c_axiom_renderPassDescriptor_screenSelection.stencilAttachment.texture = self.c_axiom_texture_screenSelection_depth self.c_axiom_renderPassDescriptor_screenSelection.colorAttachments[0].loadAction = .clear; self.c_axiom_renderPassDescriptor_screenSelection.colorAttachments[0].clearColor = MTLClearColorMake(0,0,0,0); self.c_axiom_renderPassDescriptor_screenSelection.colorAttachments[0].storeAction = .store; let textureDescriptor = MTLTextureDescriptor.textureBufferDescriptor(with: MTLPixelFormat.rgba16Float, width: 1,

resourceOptions: [], usage: MTLTextureUsage.shaderWrite)

State of the Art

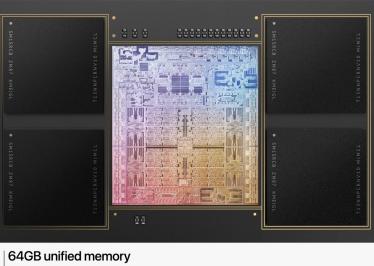
Qualcomm

Snapdragon

CSUN CALIFORNIA STATE UNIVERSITY NORTHRIDGE COMP222 Quora

Apple M1 SoC

Could Qualcomm have developed an M1 competitor without ex-Apple engineers?



Jeff Drobman

Lecturer at California State University, Northridge (2016-present) · Just now

anything is possible. but Apple has been a partner with ARM since about 1990, and has always had the ability and license to customize the CPU and GPU cores. base ARM cores were single-threaded. I suspect Apple extended them to SMT2 (like AMD) or even hyper-threading (like Intel). then Apple probably also modified ARM Mali GPU cores into

an improved or extended design.

High bandwidth, low latency 512-bit LPDDR5 interface Apple-designed custom package

Qualcomm will continue using **multiple foundries** to manufacture its chips, one of its executives said on Tuesday.

The US chip giant was continuing to collaborate with **Samsung** Foundry and will use multiple foundries, from the South Korean company, **TSMC** to **GlobalFoundries**, depending on their technological maturity going forward, Qualcomm senior vice president Don McGuire said during Qualcomm's Snapdragon Summit 2022 in Hawaii in a meeting with South Korean press.

Qualcomm has currently given all its workload for 4-nanometer (nm) and 3nm chips to **TSMC**, the world's largest foundry. McGuire's comments indicate that the US firm could give orders to **Samsung** Foundry again for follow-up nodes such as gate-all-around (**GAA**).

At the summit, Qualcomm unveiled its latest application processor the **Snapdragon 8** Gen 2. The chip boasts 4.35 times increased AI performance and 25% faster processing speed compared to its predecessor.

Snapdragon 8 Gen 2 also uses Qualcomm's new **GPU** and has a CPU with 40% increase in performance. The chip will be made using **TSMC's 4nm** node. For Snapdragon 8 Gen 1, **Samsung** Foundry was the initial contract manufacturer but Qualcomm gave the order to **TSMC** during the second half of last year.

Sources had said **Samsung's** low yield rate for 4nm was the cause and the US chip firm will be giving **TSMC** the order for 3nm chips because of this.

McGuire said Qualcomm's orders were too large for it to use a single foundry and using <u>multiple foundries</u> is not only advantageous in supply but also price and scale.

The US firm also needed multiple foundries to expand in other business areas besides smartphones, he added.

Meanwhile, **Samsung**, while it facing difficulty with yield with 4nm, was the first to start production of 3nm GAA chips.

TSMC has also started 3nm chip production but for these uses a FinFET structure rather than GAA. The Taiwanese giant is reportedly planning to apply GAA structure starting with 2nm.

State of the Art

Exynos

Quora Samsung Exynos SoC

COMP222

Drazen Zoric · Follow

Lives in Cork, Ireland

Samsung is huge enterprise made of many smaller and separate Samsung companies. For electronics two are most important:

- Samsung Electronics has fabs for IC manufacturing
- Samsung Semiconductor designs CPU, SoC and everything else

Samsung Semi most known product is Exynos SoC used in Samsung Galaxy phones. Well, US, S Korea use Qualcomm Snapdragon SoC while rest of the World uses Exynos. Is Exynos good? Well, it is not so good as Snapdragon or high end MediaTek (Dimensity). But later on this.

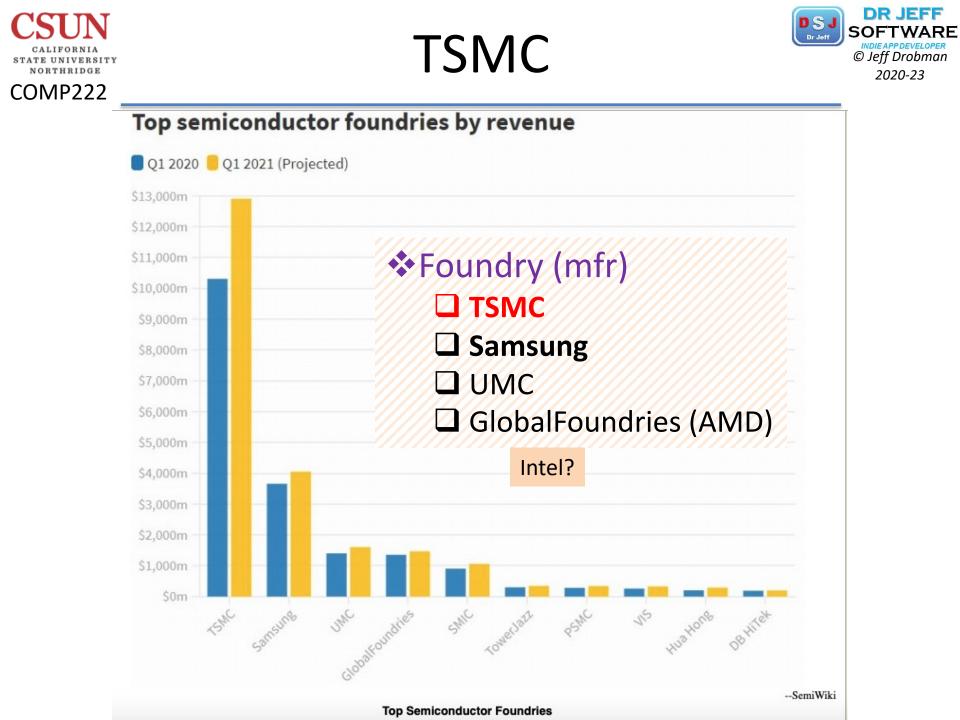
For example latest Exynos 2200 uses AMD Radeon GPU and chip was total disaster. So big disaster that Samsung canceled big presentation show 1 day before show. Chip was very slow and ran very hot. In meantime they fixed some problems but still no show.

COMP222

Drazen Zoric · Follow Lives in Cork, Ireland

Quora

Samsung Elec has fabs for IC manufacturing. They produce Exynos as well as for others, eg NVidia, Qualcomm, etc. Samsung Elec was first one to commercially switch from FinFET to GAA in 2022. TSMC and Intel plan this switch in 2 or so years. But Samsung Elec has problems which cost them NVidia and Qualcomm moving to TSMC. For example Snapdragon 8 Gen 1 was produced by Samsung while Snapdragon 8+ Gen 1 by TSMC and it is some 10% faster and runs quite cooler (lower power consumption). There are several articles how Samsung Elec has lots of internal problems with management what is visible in above mentioned problem.


Samsung Exynos SoC

State of the Art

CSUN CALIFORNIA STATE UNIVERSITY NORTHRIDGE COMP222		Apple									SOFT INDIE APP © Jeff L	DR JEFF SOFTWARE INDIE APP DE VELOPER © Jeff Drobman 2020-23	
Bloom	berg									US E	Edition v	Sig	
• Live Now	Markets	Economics	Industries	Technology	Politics	Wealth	Pursuits	Opinion	Businessweek	Equality	Green	Cit	

Technology

Apple Prepares to Get Made-in-US Chips in Pivot From Asia

- Company plans to source chips from Arizona plant in 2024
- CEO Tim Cook makes comments about expansion during meeting

TSMC new fabs in Arizona will open in 2024

TSMC in US

Apple, Nvidia CEOs to join President Biden at Taiwan Semi chip plant in Arizona

Dec 06, 2022 10:43 AM ET | Apple Inc. (AAPL) | Rex

Taiwan Semi (TSM), which is the world's biggest chip foundry, said it will build a second chipmaking plant in Arizona, which will boost its investments in the state to \$40B after initially saying it will put \$12B into its first plant in the state. Among those heading to Taiwan Semi's (TSM) plant near Phoenix are some of the heavyweight of the semiconductor market, including Apple (NASDAQ:AAPL) Chief Executive Tim Cook, Nvidia (NASDAQ:NVDA) CEO and founder Jensen Huang and Micron Technology (NASDAQ:MU) CEO Sanjay Mehrotra. The three will be joined by Taiwan Semi (TSM) founder Morris Chang.

12-6-22

The White House said President Biden and the tech executives will hold a "toolin" ceremony that involves a ceremonial moving of equipment to the production area of the Taiwan Semi (TSM) plant/

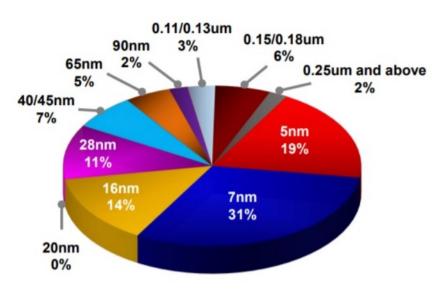
TSMC 3Q22

Revenue = \$20.23B
 EPS = \$1.79
 Wafer revenue shares

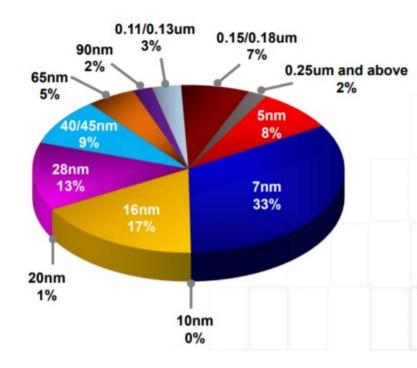
 5nm = 28%
 7nm = 26%

Samsung **7nm** did pretty good but Samsung **5nm** and **4nm** had serious PDK/yield problems and Samsung **3nm** is not really competitive against TSMC N3 and it requires new design considerations for **GAA**.

TSMC dominates the global foundry market (Market share, in percent) Samsung (South Korea) TSMC (Taiwan) <mark>⊢ UMC</mark> (Taiwan) 11.2 7.2 53.4 16.5 GlobalFoundries (U.S.) 5.9 SMIC (China) 5.6 Other Headquarters in parentheses; 2022 Q2 figures; total does not equal 100 due to rounding Source: TrendForce



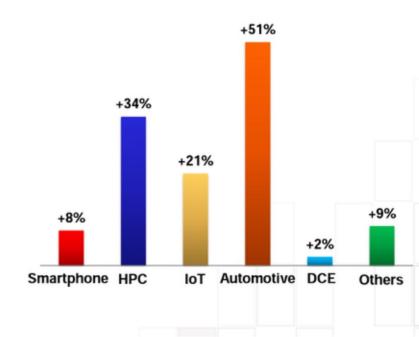
TSMC Node Segments


Revenue by Technology

Semi Wiki

2021

2020


TSMC Revenue Segments

– Semi Wiki

2021 Revenue by Platform

Automotive DCE 4% Others 3% HPC 37% Smartphone 44% Growth rate by Platform (YoY)

TSMC's current business mix

TSMC vs Intel Nodes

Intel Versus TSMC Nodes and Timing

	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
TSMC											
- Node	7	7/7+	5	5	3	3	2	2	1.5	1.5	
- Status	Risk	Full									
Intel											
- Node	14	14	10	10SF	10SF	7	7	5	5	3	3
- EN	13.8	13.8	7.1	7.1	7.1	4.1	4.1	2.4	2.4	1.3	1.3
- Status	Full	Full	Full	Full	Full	Ramp	Full	Ramp	Full	Ramp	Full

- Risk = risk starts, Ramp = production ramp, Full = full production, EN = TSMC equivalent node.
- TSMC is assumed to stay on a new node every two years with shrink similar to the 5nm and 3nm announced shrinks.
- Intel 5nm and 3nm are assumed to be on two year intervals and to be 2x density improvements consistent with the announced 7nm density shrink.

Copyright IC Knowledge LLC – all rights reserved

Slower Node Transitions Versus Foundries

IC KNOWLEDGE LLC

	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Intel	14nm					10nm				7nm
Samsung	14nm		10nm		7nm	5nm			3nm	
TSMC		16nm	10nm	7nm		5nm		3nm		2nm?

- Intel takes bigger density jumps but less often.
- TSMC and Samsung take smaller jumps more frequently, 5 nodes versus Intel's 3.

3/24/2021

STATE UNIVERSITY NORTHRIDGE

COMP222

Copyright IC Knowledge LLC, all rights reserved

4

Figure 4. Node Introductions.

TSMC 3nm (N3)

TSMC hoping to move 3nm production to US, now starting work towards 1nm

Just in time for the next set of iPhones

TSMC 3nm (N3)

TECHSPOT

THRIDGE

Currently, TSMC only produces 3nm nodes within its home country of Taiwan. While this doesn't necessarily cause any significant issues or hang-ups during Apple's development process, there are ways to streamline it. The two companies have one idea: <u>move all of TSMC's 3nm production to the United</u> States.

CSUN CALIFORNIA STATE UNIVERSITY NORTHRIDGE COMP222

TSMC 3nm (N3)

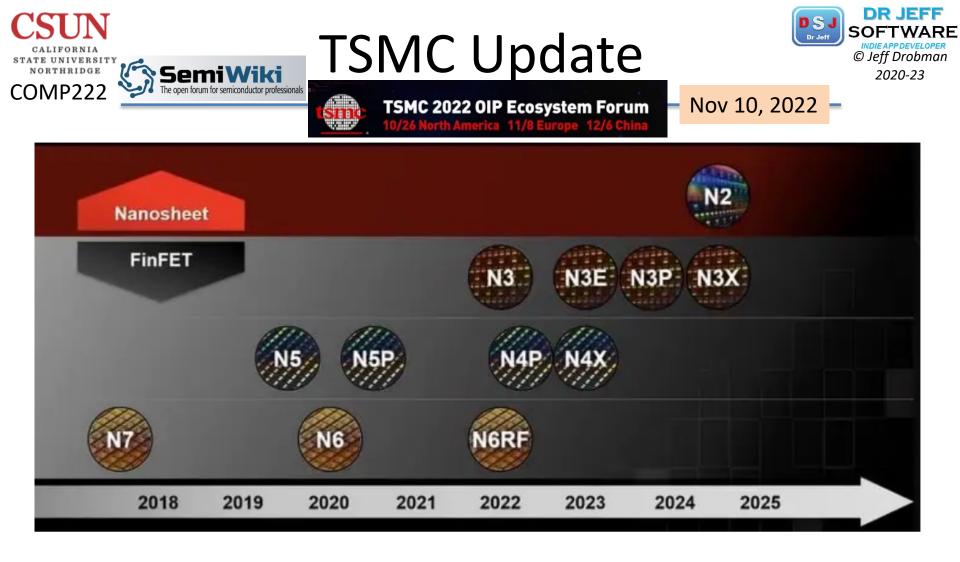
In 2020, TSMC began plans to build a processing and development plant within the US. Initial estimates put the construction's completion in 2021. However, after two delays, the deadline is now Q1 2023. Assuming they meet this timeframe, iPhone 15 models will feature a brand new <u>3nm</u> processor made in the <u>United States</u>.

TSMC 3nm (N3)

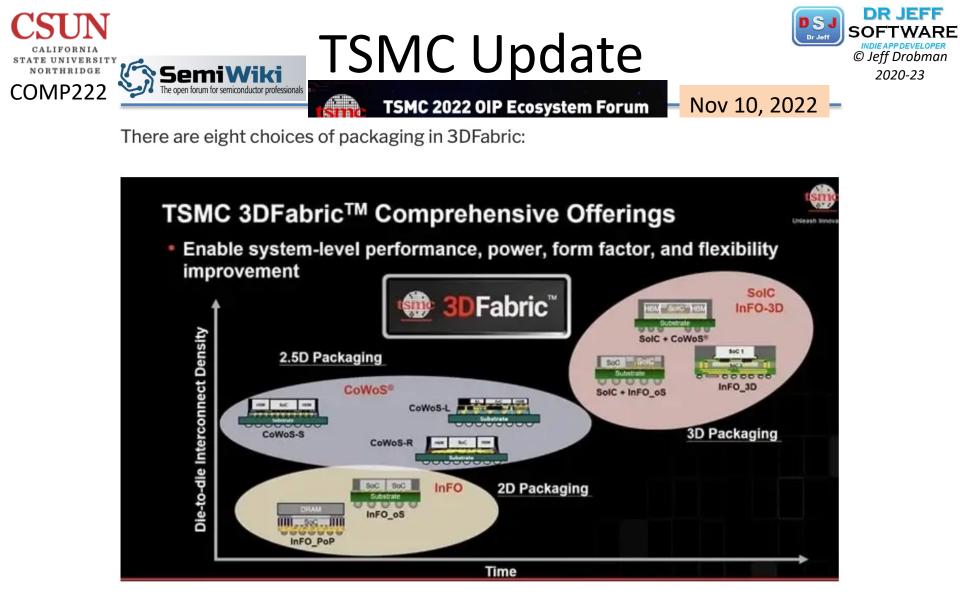
The big picture: It's been an eventful few months in the processing industry, with tech companies releasing new products left and right. The influx of devices isn't stopping, as TSMC has plans to relocate 3nm development to the United States, and that's not the only news.

Taiwan Semiconductor Manufacturing Company (TSMC) has been in the news frequently lately, with many companies releasing products that include the chip fabricator's semiconductors and process nodes. The Taiwanese chip producer has reliably supplied AMD with its 5nm processors since 2020 and even provided new <u>4nm nodes for Nvidia's recent Ada Lovelace</u> graphics cards.

The iPhone 14 also features TSMC's 4nm process node. However, as its largest customer, Apple often gets the latest and greatest developments from the supplier. As such, Cupertino plans to move to TSMC's 3nm process for the iPhone 15.

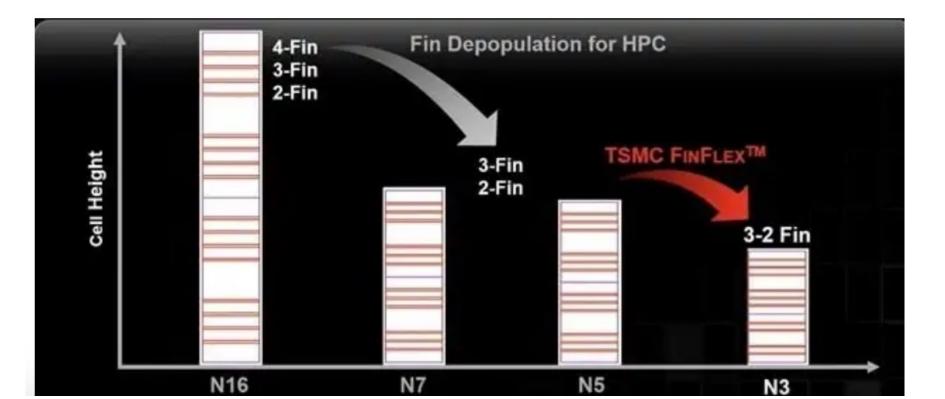


TSMC 1nm (N1)



To this end, TSMC partnered with the Massachusetts Institute of Technology (MIT) and the National Taiwan University (NTU) to research and develop new methods. After loads of engineering and testing, they discovered that combining "2D materials" and "semi-metallic bismuth" results in extremely low resistance, which may overcome the most challenging aspect of producing 1nm nodes.

The research teams did confirm that 1nm nodes are still years away from being produced and sold in consumer products. We will not see current plans for <u>2nm nodes</u> until late 2024. So it could easily be at least five years for such a breakthrough. Who knows, maybe we will see picometer-sized (1000 pm = 1nm) nodes before the end of the decade if these breakthroughs continue.


Starting with N3 there's something new called FinFlex that used Design Technology Co-Optimization (DTCO), promising an improved Power, Performance and Area (PPA) for segments like energy-efficient and high-performance. With the FinFlex approach a designer can choose from three transistor configurations, based on their design goals:

A recent example using SoIC packaging was the AMD EPYC Processor, a data center CPU, which showed a 200X interconnect density improvement over 2D packaging, a 15X density improvement over traditional 3D stacking, producing a 50-80% better CPU performance.

The history of fin block choices used in process nodes N16 to N3 are shown below:

TSMC Update

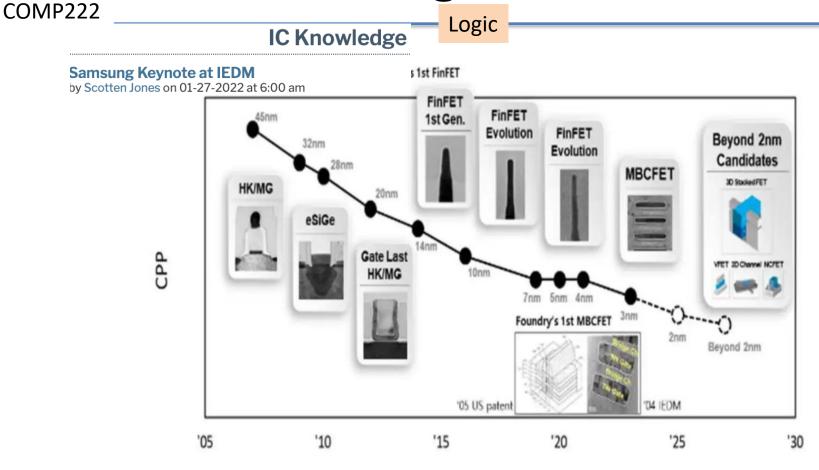
TSMC 2022 OIP Ecosystem Forum 10/26 North America 11/8 Europe 12/6 China

Nov 10, 2022

N3E Foundation IPs are Ready for Design Start

IP Category	IP List	Mobile	High Performance Computing	Vendors
	Standard Cell	۲	٠	TSMC
Foundation Library/IP	GPIO/ESD			TSMC, Synopsys
	PLL			SICr, ABI, Synopsys
Libraryin	SRAM Compiler			TSMC
	ROM Compiler			TSMC
Non Volatile	Electrical Fuse			TSMC
Memory	OTP	•	•	TSMC, Synopsys, eMemory
	DDR4/5			Synopsys, Cadence
	LPDDR4/4X/5/5X			Synopsys, Cadence
	GDDR6/7		•	Cadence
Interface IP	PCIe G2/3/4/5/6			Synopsys, Cadence, Alphawave
Interface IP	MIPI G2/3			Synopsys
	нвм			Synopsys, GUC
	PAM4 SerDes			Synopsys, Cadence, AlphaWave
	eUSB/USB 2/3.x/4			Synopsys
	HBI, XSR, BoW		•	Synopsys, Cadence, Alphawave
Chiplet	UCle		•	Synopsys, Cadence, Alphawave, Credo

State of the Art



Samsung Processes

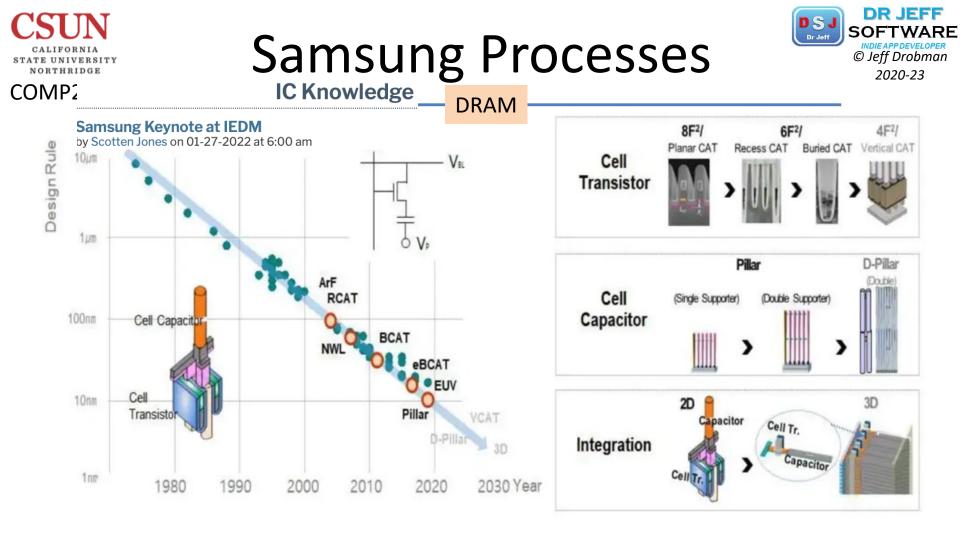
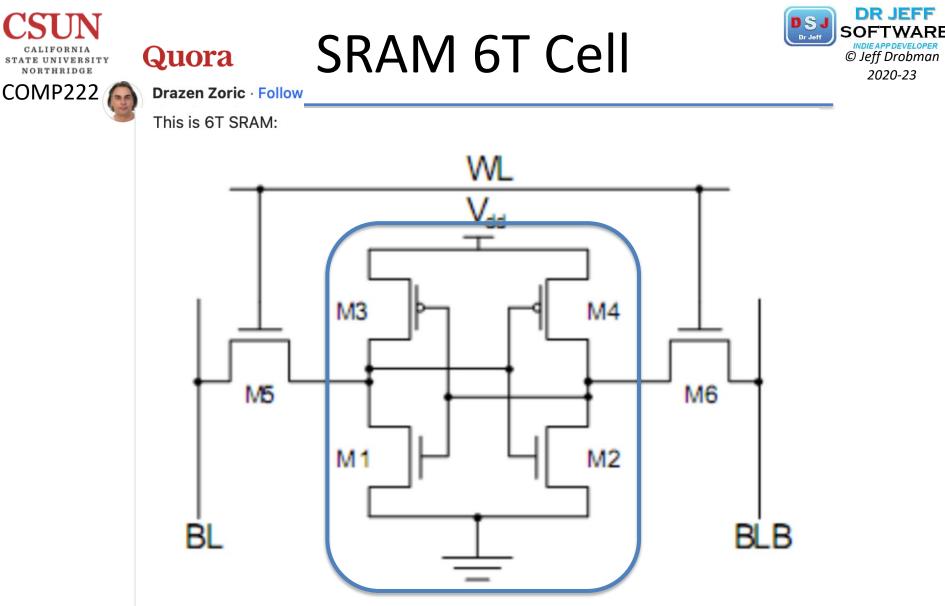

NORTHRIDGE

Figure 1. Logic Roadmap.

n figure 1 we can see how the contacted poly pitch (CPP) of logic processes has caled over time. In the planar era we saw high-k metal gate (HKMG) introduced by ntel at 45nm and by the foundries at 28nm as well as innovations like embedded

Figure 2 DRAM Roadmap


With EUV already ramping up in DRAM, the next challenges are shrinking the memory cell. Samsung is anticipating staking two layers of capacitors soon. A switch

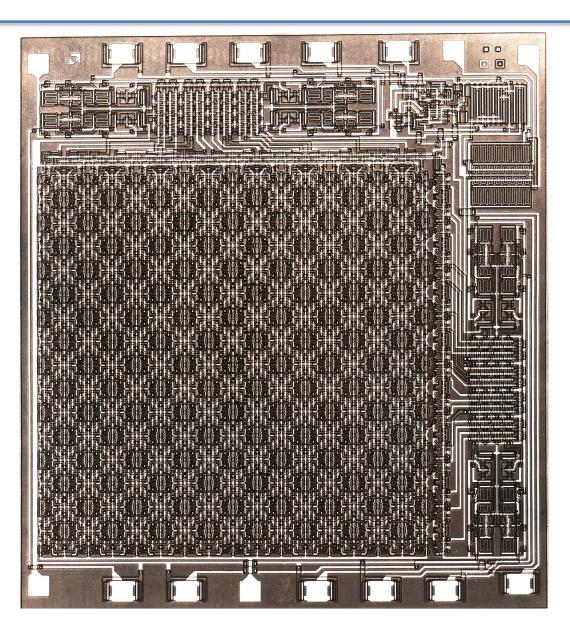
State of the Art

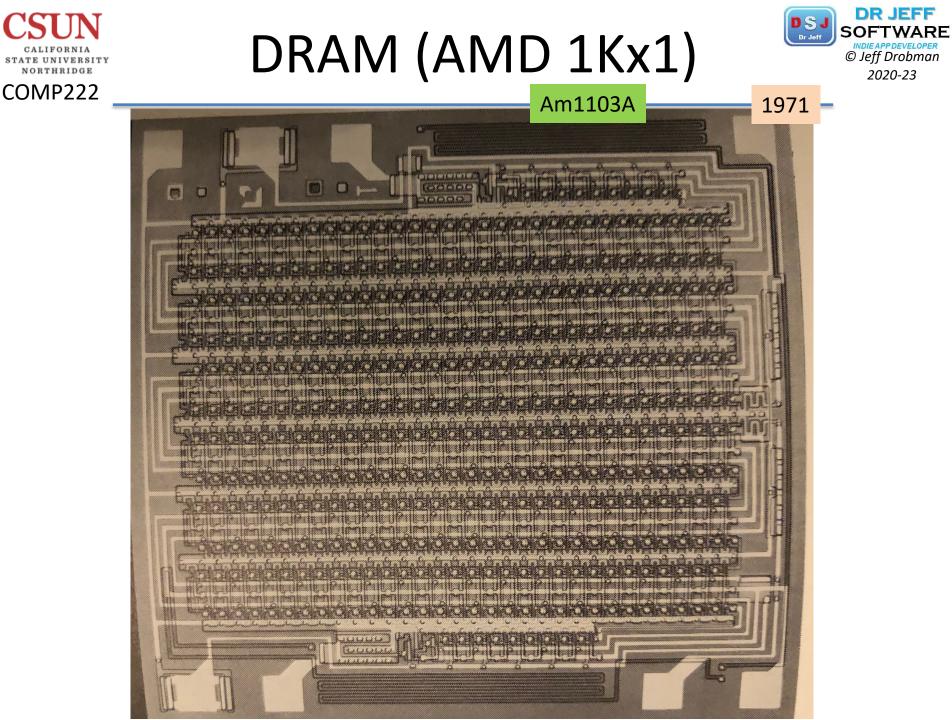
Two extra N MOSFETs are used as switches selected with WL (Word Line). Depending what is on BL (Bit Line) or BLB (Bit Line Bar or /BL) cell works in read or write mode (WL must be high to get cell out of hold mode). Driving BLs with stronger driver will write bit into cell when WL is high - M1 - M4 transistors are not strong, have higher resistance and BL drivers can properly change voltage.

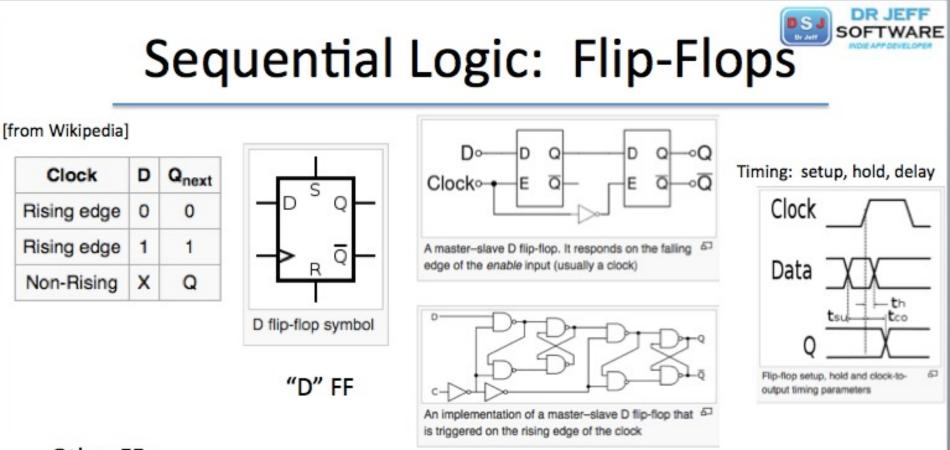
SRAM Cells

I am guessing it's either 0.25 / 0.35 / 0.5 micron.

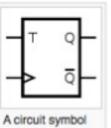
SRAM cell width/height seems regular enough that I could figure out critical dimensions.

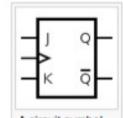


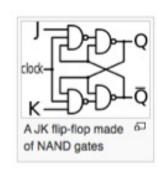

SRAM or ROM?



Am1101A 256x1 SRAM






Other FFs

A circuit symbol for a T-type flipflop

A circuit symbol for a positiveedge-triggered JK flip-flop

Micron had better hope that Samsung shows restraint and also cuts spend so the flood of memory chips doesn't turn into a Tsunami. In the past Samsung and other aggressive memory manufacturers have cranked production in weak conditions to try to push smaller players out which is in large part why the US went from 7 memory makers to just one remaining, Micron.

SemiWiki The open forum for semiconductor professionals



Micron- "The first cut isn't the deepest"- Chops production & forecast further

by Robert Maire on 11-23-2022 at 6:00 am Categories: Semiconductor Advisors, Semiconductor Services 2 Comments

ORTHRIDGE

COMP222

-Micron announces more production cuts & lower forecast -DRAM will be negative- NAND sounds barely flat (for now) -Capital spending to be cut to near zero- essential only -Will the rest of the industry follow suit?

Virtual Memory

Why do we use virtual memory addresses instead of real ... physical addresses?

COMP222

Jeff Drobman

Quora

Lecturer at California State University, Northridge (2016–present) \cdot () Just now \cdot ()

we DO use physical addresses — for "embedded" designs. for general computing with an operating system, the OS needs to be able to locate and relocate code and data anywhere in the physical address space. since a programmer cannot know where their code will be located, they use a "virtual" address which gets translated into a physical from the OS' "page table" and its cache called "TLB".

VM – Page

What is the definition of a page in computer science?

Jeff Drobman

Lecturer at California State University, Northridge (2016–present) · Just now

a "page" is a unit of main memory segmentation anywhere in size from 1KB to 1MB, but typically 64KiB (e.g., MIPS). there can be both *virtual* and *physical* pages in a virtual memory, with a mapping managed by the OS. in a virtual memory, the upper part of a virtual address is the page number, while the lower portion is the untranslated address within the page.

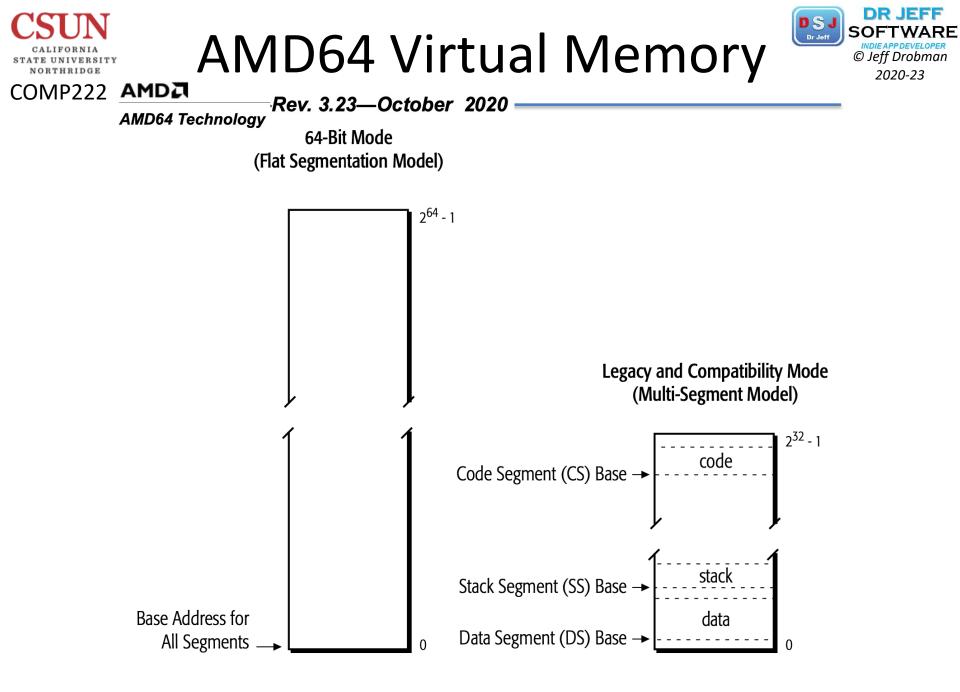


Figure 2-1. Virtual-Memory Segmentation

CSUN CALIFORNIA STATE UNIVERSITY NORTHRIDGE

TLB Data

COMP222 5.13 Real stuff: The ARM Cortex-A8 and Intel Core i7 P&H 5.13 -

Figure 5.13.1: Address translation and TLB hardware for the ARM Cortex-A53 and Intel Core i7 920 (COD Figure 5.42).

Both processors provide support for large pages, which are used for things like the operating system or mapping a frame buffer. The large-page scheme avoids using a large number of entries to map a single object that is always present.

Characteristic	ARM Cortex-A53	Intel Core i7
Virtual address	48 bits	48 bits
Physical address	40 bits	36 bits
Page size	Variable: 4, 16, 64 KiB, 1, 2 MiB, 1 GiB	Variable: 4 KiB, 2/4 MiB
TLB organizatio n	1 TLB for instructions and 1 TLB for data	1 TLB for instructions and 1 TLB for data per core
	Both L1 TLBs are fully associative, with 10 entries, round robin replacement	Both L1 TLBs are four-way set associative, LRU replacement
	Unified L2 TLB with 512 entries, 4-way set associate	L1 I-TLB has 128 entries for small pages, 7 per thread for large pages
	TLB misses handled in hardware	L1 D-TLB has 64 entries for small pages, 32 for large pages
		The L2 TLB is four-way set associative, LRU replacement
		The L2 TLB has 512 entries
		TLB misses handled in hardware

State of the Art

AVR 8-bit MCU

AVR microcontrollers

From Wikipedia, the free encyclopedia

AVR is a family of <u>microcontrollers</u> developed since 1996 by <u>Atmel</u>, acquired by <u>Microchip</u> <u>Technology</u> in 2016. These are <u>modified Harvard architecture 8-bit RISC</u> single-chip microcontrollers. AVR was one of the first microcontroller families to use on-chip <u>flash</u> <u>memory</u> for program storage, as opposed to <u>one-time programmable ROM</u>, <u>EPROM</u>, or <u>EEPROM</u> used by other microcontrollers at the time.

AVR microcontrollers find many applications as <u>embedded systems</u>. They are especially common in hobbyist and educational embedded applications, popularized by their inclusion in

many of the <u>Arduino</u> line of <u>open hardware</u> development boards. **XMEGA**

Flash size	Frequency [MHz]	Package	SRAM	EEPROM	Release year	
16–256 KB	32	44-100-pin package	1–32 KB	512–2048 bytes	—	

the ATxmega series offers a wide variety of peripherals and functionality such as:

- Extended performance features, such as DMA, "Event System", and cryptography support
- Extensive peripheral set with ADCs ADC

Application-specific AVR

RTHRIDGE

COMP222

• megaAVRs with special features not found on the other members of the AVR family, such a

FPSLIC (AVR with FPGA)

- FPGA 5k to 40k gates
- SRAM for the AVR program code, unlike all other AVRs
- AVR core can run at up to 50 MHz^[9]

Various older AVR microcontrollers: ATmega8 in 28-pin narrow dual in-line package (DIP-28N), ATxmega128A1 in 100-pin thin quad flat pack (TQFP-100) package, ATtiny45 in 8-pin small outline (SO-8) package.

AVR 32-bit MCU

AVR microcontrollers

From Wikipedia, the free encyclopedia

•In 2006, Atmel released microcontrollers based on the 32-bit <u>AVR32</u> architecture.

This was a completely different architecture unrelated to the 8-bit AVR, intended to compete with the <u>ARM</u>-based processors. It had a 32-bit data path, <u>SIMD</u> and <u>DSP</u> instructions, along with other audio- and video-processing features. The instruction set was similar to other RISC cores, but it was not compatible with the original AVR (nor any of the various ARM cores). Since then support for AVR32 has been dropped from Linux as of kernel 4.12; compiler support for the architecture in <u>GCC</u> was never mainlined into the compiler's central source-code repository and was available primarily in a vendor-supported fork. At the time that AVR32 was introduced, Atmel had already been a licensee of the <u>ARM architecture</u>, with both <u>ARM7</u> and <u>ARM9</u> microcontrollers having been released prior to and concurrently with the AVR32; later Atmel focused most development effort on 32-bit chips with <u>ARM</u> <u>Cortex-M</u> and <u>Cortex-A</u> cores.

- Analog comparator
- 10 or 12-bit A/D converters, with multiplex of up to 16 channels
- 12-bit D/A converters

STATE UNIVERSITY NORTHRIDGE

COMP222

Microcontrollers

100 MHz

Part Number ↑↓ Filter by part number	Microcontroller Type	MCU Core ↑↓	Internal Flash (KBytes) ↑↓	Speed (max) (MHz) ↑↓	Data Processing ↑↓	Internal SRAM (KBytes) ↑↓
MAX32672 High-Reliability, Tiny, Ultra-Low Power ARM Cortex-M4F Microcontroller with 12-Bit 1MSPS ADC	General Purpose, Low Power	ARM Cortex-M4F	1000	100	32-bit	200
MAX32675 Ultra-Low-Power Arm Cortex-M4E with Precision Analog Front End for Industrial and Medical Sensors	General Purpose, Industrial, Low Power	ARM Cortex-M4F	384	100	32-bit	160
MAX32670 High Reliability, Ultra Low Power Microcontroller Powered by ARM Cortex M4 w/ FPU for Industrial and IoT	General Purpose, Low Power	ARM Cortex-M4F	384	100	32-bit	160

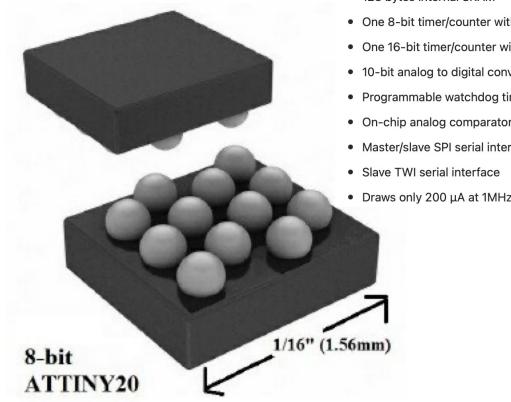
Maxim/ADI Clock Gen

J

Part Number ↑↓ Filter by part number	End Equipment ↑↓	f _{IN} (min) (MHz) ↑↓	f _{IN} (max) (MHz) ↑↓	f _{OUT} (min) (MHz) ↑↓	f _{OUT} (max) (MHz) ↑↓
MAX31180 Spread-Spectrum Crystal Multiplier	General Purpose	16	33.4	16	134
DS1080L Spread-Spectrum Crystal Multiplier	General Purpose	16	33.4	134	134

litter	Output Jitter (RMS) (ps) ↑↓	V _{SUPPLY} (V) ↑↓
	75	3.3
	75	3.3

MCU



Tom Crosley · Follow

Embedded systems programmer for 45 years · 4y

What is the smallest CPU currently?

Probably this little guy, ATTINY20 Ifrom Microchip:

Capable microcontroller with the following features:

- 16 x 8 general purpose working registers
- Up to 12 MIPS throughput at 12 MHz
- 2K bytes of programmable flash program memory
- 128 bytes internal SRAM
- One 8-bit timer/counter with two PWM channels
- One 16-bit timer/counter with two PWM channels
- 10-bit analog to digital converter
- · Programmable watchdog timer with separate on-chip oscillator
- On-chip analog comparator
- Master/slave SPI serial interface
- Draws only 200 μA at 1MHz and 1.8V

Less than 1/16" square (1.40 mm x 1.56mm). Look at a ruler and see how small that really is.

State of the Art

Supercomputers

COMP222

Supers: #1 Frontier Quora

Dan L. Oom · Sep 13

The "Summit" is now in fourth place. The fastest computer is the Frontier, also at ORNL at 1.1 EFLOPS.

It uses AMD EPYC 64C 2GHz processors, with a total of over 8 million cores, so its a bit like a million PCs with a highspeed Slingshot-11 interconnect.

Reply

Drazen Zoric · Sep 14

Frontier uses only 9472 Epycs with total of 606,208 cores but also uses AMD MI250X Instinct Accelerators (GPU) with total of 8,335,360 "GPU" cores.

Top 5 Supers

CALIFORNIA STATE UNIVERSITY NORTHRIDGE

COMP222

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100
2	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
4	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,463,616	174.70	255.75	5,610
5	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/SC/Oak Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
6	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz,	1,572,480	94.64	125.71	7,438

CALIFORNIA STATE UNIVERSITY NORTHRIDGE COMP2222	Top 10 Supers					
6	Sierra - IBM Power System AC922, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DOE/NNSA/LLNL United States	1,572,480	94.64	125.71	7,438	
7	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93.01	125.44	15,371	
8	Perlmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE DOE/SC/LBNL/NERSC United States	761,856	70.87	93.75	2,589	
9	Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63.46	79.22	2,646	
10	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou China	4,981,760	61.44	100.68	18,482	

Quora COMP222

Supercomputer Pix

Performance Measurement Lead at Fastly (company) (2019-present) · Upvol What does a super computer look like?

Gaurav Saxena, MSc High Performance Computing, University of Edinburgh

From the outside:

Looks like a big industrial building with a lot of power and cooling... because that's what it is. Depending on how we look at it, that's one machine, 17 machines, 33 machines, or a classified number that might be a few hundred thousand (I didn't look it up).

COMP222 Quora

DR JEFF © Jeff Drobman 2020-23

Performance Measurement Lead at Fastly (company) (2019-present) · Upvol What does a super computer look like?

Supercomputer Pix

Each tray in the racks on the right is a very big PC-like server and some hard drives.

COMP222 Quora

Performance Measurement Lead at Fastly (company) (2019-present) · Upvol What does a super computer look like?

Gaurav Saxena, MSc High Performance Computing, University of Edinburgh

Supercomputer Pix

Cooling. For scale, this space is triple-height, so those big green things on the left are about shoulder-high to a tall man.

COMP222 Quora

Supercomputer Pix

Performance Measurement Lead at Fastly (company) (2019-present) · Upvol What does a super computer look like?

Gaurav Saxena, MSc High Performance Computing, University of Edinburgh

That's the network interface. All the yellow stuff? Fiber optic cable, and trays to carry it.