= DR JEFF
CALIFORNIA ImlsoFTWARE

STATE UNIVERSITY
NORTHRIDGE © Jeff Drobman

2020-23

Spring 2023 Rev 4-17-23

Computer Organization
(Architecture)

CSUN

COMP222

Lecture 3

Dr Jeff Drobman

website m) drjeffsoftware.com/classroom.html

email = jeffrey.drobman@csun.edu

AAAAAAAAAA

TTTTTTTTTTTTTTT

RRRRRRRRRR

COMP222

; | DR JEFF
I l SOFTWARE

Index (Vol. 3) s

**Multi-Threading (ILP) = slide 3
JSuperscalar—> slide 25
JHyperthreading - slide 37

d Perf/Benchmarks = slide 46
Ax86: AMD vs Intel = slide 69

A MT in Java = slide 78

*»»Data Parallelism (DLP) = slide 99

JFlynn, SIMD, MMX/AVX Vectors = slide 104
JAMX - slide 134
JVLIW/IMC = slide 148 (see separate slide set)

“*Micro arch. =2 slide 156 (see separate siide set)
% GPU (Graphics) = slide 157 (see separate sie set)
“*DSP - slide 158

. DR JEFF
CSUN . 8 soFrware
CALIFORNIA INDIE APP DEVELOPER
TTTTTTTTTTTTTTT I I © Jeff Drob
NORTHRIDGE S e Ct I O eff Drobman

2020-23
COMP222

Multi-Threading

@W DR JEFF
CSUN 254 soFrware
INDIE APPDEVELOPER
Aoy |V| | K e
NORTHRIDGE 2020_23

COMP222 Wiki

In computer architecture, multithreading is the ability of a central processing unit (CPU) (or a single core in a multi-core
processor) to provide multiple threads of execution concurrently, supported by the operating system. This approach differs from
multiprocessing. In a multithreaded application, the threads share the resources of a single or multiple cores, which include the
computing units, the CPU caches, and the translation lookaside buffer (TLB).

Where multiprocessing systems include multiple complete processing units in one or more cores, multithreading aims to increase
utilization of a single core by using thread-level parallelism, as well as instruction-level parallelism. As the two techniques are
complementary, they are sometimes combined in systems with multiple multithreading CPUs and with CPUs with multiple

multithreading cores.
Process

Thread #1 Thread #2

(VA VWV, Vo
Time

v

A process with two threads of &l
execution, running on a single
processor.

CSUN

CALIFORNIA

gre DR JEFF
IQISOFTWARE

INDIE APPDEVELOPER

STATE UNIVERSITY IVI T D I a g ra l I I © Jeff Drobman
NORTHRIDGE 2020_23
COMP222
code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread ——> ; <+—— thread

single-threaded process multithreaded process

Multithreading Diagram 1

Threads

2020-23
COMP222

|
|
I
|
|
(
I
|
|
I
|
|
One process I One process
One thread : Multiple threads
____________________________ il o v o i . e i i e N g i i i v,
I
I
|
I
|
|
|
|
|
|
|
|
|
I
|
|
Multiple processes : Multiple processes
I

One thread per process Multiple threads per process

@ DR JEFF
Q SOFTWARE

CSUN

T Cores + Threads & iforobmr
NORTHRIDGE 2020_23

COMP222

]
Core

l

Managing & Executing

Scheduling

Software
Hardware

TTTTTTTTTTTTTTT
NORTHRIDGE

COMP222

@ DR JEFF
ﬂ SOFTWARE

Java Threads S

2020-23

Java

P1 §
Thl
A

4

Pn §
Thi §

Assignment

Hardware MT

DR JEFF

CSUN 1) soFTWARE
INDIE APPDEVELOPER
. [hreads o i orobmr
NORTHRIDGE

2020-23
COMP222

Which one is better, a processor with 4 cores, 8 threads and 1.8
GHz or a processor with 4 cores, 4 threads and 3.6 GHz?

@ Jeff Drobman - just now
'y Lecturer at California State University, Northridge (2016-present)

the latter if MT is “temporal”: faster clock frequency gives a 2x boost to all threads running.
4 cores can only run 4 threads at a time for “temporal” MT; but can run all 8 threads
simultaneously with "SMT" — so 1st case is equal.

DR JEFF

CSUN &) soFTwaRE
eSO MT Ty p es e

2020-23
COMP222

1. Temporal (TMT)

a.Coarse-grained > latatime
b.Fine-grained (Interleaved)

2. Simultaneous (SMT) > >1atatime
a.SMT

b.HTT

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

MT Timeline

(=)

m Superscalar

1M

10M

No. Transistors (x2)

100M

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2020-23

1B

AAAAAAAAAAAA
STATE UNIVERSITY

COMP22

MT Summary

| DR JEFF
25 soFTWARE
© Jeff Drobman
2020-23

s Temporal

\/
0‘0

L) 4

d Sequential

d Coarse grained
= Run until stall, then switch
= Need to use algorithms (fairness)
d Fine grained
= Interleaved (per cycle)

= Round-robin
= Barrel processor

¢ ARM?
“ MIPS?

SMT (AMD)

J Parallel

d Superscalar
Hyper (Intel)
d SMT

d Virtual pipelines with scheduler

CSUN B3 sorrane
Shared Resources e

2020 23
COMP222

** Registers

d Shared (w/renaming)
J Partitioned

J Replicated

** Caches (L1 1+D, TLB)

d Shared (w/thrashing)

 Virtual Partitioned: Set Associative
 Physical Partitioned (Replicated)
* EU’s

d Int ALU/FPU

J Ld/St

J Br

— DR JEFF
CSUN B soFrware
INDIEAPPDEVELOPER
r RTINS M A s
NORTHRIDGE

2020-23
COMP222 Wiki

Overview |[edi]

The multithreading paradigm has become more popular as efforts to further exploit instruction-level parallelism have stalled since the late 1990s. This allowed the
concept of throughput computing to re-emerge from the more specialized field of transaction processing. Even though it is very difficult to further speed up a single thread
or single program, most computer systems are actually multitasking among multiple threads or programs. Thus, techniques that improve the throughput of all tasks result
in overall performance gains.

Two major techniques for throughput computing are multithreading and multiprocessing.

Advantages |edit]

If a thread gets a lot of cache misses, the other threads can continue taking advantage of the unused computing resources, which may lead to faster overall execution, as
these resources would have been idle if only a single thread were executed. Also, if a thread cannot use all the computing resources of the CPU (because instructions
depend on each other's result), running another thread may prevent those resources from becoming idle.

Disadvantages | edit]

Multiple threads can interfere with each other when sharing hardware resources such as caches or translation lookaside buffers (TLBs). As a result, execution times of a
single thread are not improved and can be degraded, even when only one thread is executing, due to lower frequencies or additional pipeline stages that are necessary
to accommodate thread-switching hardware.

Overall efficiency varies; Intel claims up to 30% improvement with its Hyper-Threading Technology,!"! while a synthetic program just performing a loop of non-optimized
dependent floating-point operations actually gains a 100% speed improvement when run in parallel. On the other hand, hand-tuned assembly language programs using
MMX or AltiVec extensions and performing data prefetches (as a good video encoder might) do not suffer from cache misses or idle computing resources. Such
programs therefore do not benefit from hardware multithreading and can indeed see degraded performance due to contention for shared resources.

From the software standpoint, hardware support for multithreading is more visible to software, requiring more changes to both application programs and operating
systems than multiprocessing. Hardware techniques used to support multithreading often parallel the software techniques used for computer multitasking. Thread
scheduling is also a major problem in multithreading.

CSUN B soFrware
Temporal MT o

2020-23
COMP222 : -
> 1 atatime -

Coarse-grained multithreading | edit]

The simplest type of multithreading occurs when one thread runs until it is blocked by an event that normally would create a long-latency stall. Such a stall might be a
cache miss that has to access off-chip memory, which might take hundreds of CPU cycles for the data to return. Instead of waiting for the stall to resolve, a threaded

processor would switch execution to another thread that was ready to run. Only when the data for the previous thread had arrived, would the previous thread be placed
back on the list of ready-to-run threads.

For example: 1. Tem PO ral

Cycle i: instruction j from thread A is issued. > Run until blocked d. Coarse-grained
Cycle i + 1:instructionj + 1 from thread 4 is issued. b. Interleaved

Cycle i + 2: instruction j + 2 from thread A4 is issued, which is a load instruction that misses in all caches.
Cycle i + 3: thread scheduler invoked, switches to thread B.
Cycle i + 4: instruction k from thread B is issued.

Cycle i + 5: instruction k + 1 from thread B is issued. Temporal multithreading is one of the two
main forms of multithreading that can be
implemented on computer processor
hardware, the other being simultaneous
multithreading. The distinguishing difference
between the two forms is the maximum
number of concurrent threads that can

| OF RTINS

Interleaved multithreading | edit]
Main article: Barrel processor

The purpose of interleaved multithreading is to remove all data dependency stalls from the execution pipeline. Since one thread is relatively independent from other
threads, there is less chance of one instruction in one pipelining stage needing an output from an older instruction in the pipeline. Conceptually, it is similar to preemptive
multitasking used in operating systems; an analogy would be that the time slice given to each active thread is one CPU cycle.

» Interleaved = Time sliced (time-sharing)

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

Interleaved Barrel Proc

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2020-23

I/O Programs
in Barrel

Memory

Latency = 1 Barrel Rotation

I \>

PC

| reg0

reg1

regn-1

I

SLOT

Time-shared
instruction control

PC '
reg0 |

reg1 |

regn-1

Mikko Lipasti-University of Wisconsin

@ DR JEFF
CSUN 23 soFTwARE
pCAonNI S |V| | oesrronmomn

NORTHRIDGE

2020-23
COMP222 Wiki

Simultaneous multithreading | edit)
Main article: Simultaneous multithreading

The most advanced type of multithreading applies to superscalar processors. Whereas a normal superscalar processor issues multiple instructions from a single thread
every CPU cycle, in simultaneous multithreading (SMT) a superscalar processor can issue instructions from multiple threads every CPU cycle. Recognizing that any
single thread has a limited amount of instruction-level parallelism, this type of multithreading tries to exploit parallelism available across multiple threads to decrease the
waste associated with unused issue slots.

For example:

1. Cycle i: instructions j and j + 1 from thread 4 and instruction k from thread B are simultaneously issued.
2. Cyclei + 1:instruction j + 2 from thread A, instruction k + 1 from thread B, and instruction m from thread C are all simultaneously issued.
3. Cycle i + 2:instruction j + 3 from thread A4 and instructions m + 1 and m + 2 from thread C are all simultaneously issued.

To distinguish the other types of multithreading from SMT, the term "temporal multithreading” is used to denote when instructions from only one thread can be issued at a
time.

In addition to the hardware costs discussed for interleaved multithreading, SMT has the additional cost of each pipeline stage tracking the thread ID of each instruction
being processed. Again, shared resources such as caches and TLBs have to be sized for the large number of active threads being processed.

Implementations include DEC (later Compaq) EV8 (not completed), Intel Hyper-Threading Technology, IBM POWERS, Sun Microsystems UltraSPARC T2, Cray XMT,
and AMD Bulldozer and Zen microarchitectures.

Superscalar = multi-issue = multi-EU (pipeline + ALU)

-
MT

= DR JEFF
CSUN 25 soFTwARE
" INDIEAPPDEVELOPER
RTINS M S i brabman
NORTHRIDGE 2020_23

COMP222

Hyper

“Hyper-threading (officially called Hyper-Threading Technology or HT

Technology and abbreviated as HTTor HT) is Intel's proprietary simultaneous
multithreading (SMT) implementation used to improve parallelization of
computations (doing multiple tasks at once) performed on x86 microprocessors. It
was introduced on Xeonserver processors in February 2002 and on Pentium

4 desktop processors in November 2002.

Since then, Intel has included this technology in Itanium, Atom, and Core i’
SeriesCPUs, among others.

For each processor core that is physically present, the operating system addresses
two virtual (logical) cores and shares the workload between them when possible.
The main function of hyper-threading is to increase the number of independent
instructions in the pipeline; it takes advantage of superscalar architecture, in which
multiple instructions operate on separate data in parallel.”

yes, AMD has their own version of “SMT” which is essentially “superscalar” with
hardware MT. but Wikipedia says Intel’s version shares the Execution Unit, while
true superscalar has duplicate EU’s.

https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Proprietary_hardware
https://en.wikipedia.org/wiki/Simultaneous_multithreading
https://en.wikipedia.org/wiki/Parallel_computation
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Pentium_4
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/Intel_Atom
https://en.wikipedia.org/wiki/Intel_Core
https://en.wikipedia.org/wiki/Processor_core
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Superscalar_processor
https://en.wikipedia.org/wiki/Parallel_computing

CSUN &) sorrware
pChuromn MT Researc h e

2020-23
COMP222 Wiki

Thread Level Speculation (TLS) is a
technique to speculatively execute a section
of computer code that is anticipated to be TLS
executed later in parallel with the normal
execution on a separate independent thread.
Such a speculative thread may need to make
assumptions about the values of input

Implementation specifics |edit]

A major area of research is the thread scheduler that must quickly choose from among the list of ready-to-run threads to execute next, as well as maintain the ready-to-
run and stalled thread lists. An important subtopic is the different thread priority schemes that can be used by the scheduler. The thread scheduler might be implemented
totally in software, totally in hardware, or as a hardware/software combination.

Another area of research is what type of events should cause a thread switch: cache misses, inter-thread communication, DMA completion, etc.

If the multithreading scheme replicates all of the software-visible state, including privileged control registers and TLBs, then it enables virtual machines to be created for
each thread. This allows each thread to run its own operating system on the same processor. On the other hand, if only user-mode state is saved, then less hardware is
required, which would allow more threads to be active at one time for the same die area or cost.

Thread Scheduler

@sa DR JEFF
CSUN 25 soFTWARE
pCAonNI | |_ P / T |_ P . |V| T / S |V| T oesrommoren
e 2020-23

NORTHRIDGE

COMP222

Wiki Instructions vs. Threads

Taxonomy |edi]

In processor design, there are two ways to increase on-chip parallelism with fewer resource requirements: one is superscalar technique which tries to exploit
instruction level parallelism (ILP); the other is multithreading approach exploiting thread level parallelism (TLP).

Superscalar means executing multiple instructions at the same time while thread-level parallelism (TLP) executes instructions from multiple threads within one
processor chip at the same time. There are many ways to support more than one thread within a chip, namely:

« Interleaved multithreading: Interleaved issue of multiple instructions from different threads, also referred to as temporal multithreading. It can be further divided into
fine-grained multithreading or coarse-grained multithreading depending on the frequency of interleaved issues. Fine-grained multithreading—such as in a barrel
processor—issues instructions for different threads after every cycle, while coarse-grained multithreading only switches to issue instructions from another thread
when the current executing thread causes some long latency events (like page fault etc.). Coarse-grain multithreading is more common for less context switch
between threads. For example, Intel's Montecito processor uses coarse-grained multithreading, while Sun's UltraSPARC T1 uses fine-grained multithreading. For
those processors that have only one pipeline per core, interleaved multithreading is the only possible way, because it can issue at most one instruction per cycle.

« Simultaneous multithreading (SMT): Issue multiple instructions from multiple threads in one cycle. The processor must be superscalar to do so.

« Chip-level multiprocessing (CMP or multicore): integrates two or more processors into one chip, each executing threads independently.

« Any combination of multithreaded/SMT/CMP.

The key factor to distinguish them is to look at how many instructions the processor can issue in one cycle and how many threads from which the instructions come.
For example, Sun Microsystems' UltraSPARC T1 is a multicore processor combined with fine-grain multithreading technique instead of simultaneous multithreading

because each core can only issue one instruction at a time.

Superscalar = multi-issue = multi-EU (upper pipeline)

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

MT vs. Multi-core

Jeff Drobman - Just now

1st we have to rule out “temporal” MT, since there is little benefit going
beyond 2 threads there. then for SMT, since we use multiple EU’'s, we
have to closely examine the benefit of shared L1 caches for SMT vs
separate dedicated L1/L2 caches (with shared L3) for multi-core. |
conjecture that 2 single-thread cores would outperform an SMT2 single
core; i.e., cores would outperform threads due to the cache and register
dedication vs shared.

CSUN : B sorrware
o MT in Pro grams L i
comp222 Quora o
é Avinash K S, works at Macquarie Group

"7** What are common mistakes made in multithreaded

programming?
Creating unnecessary dependencies (also read shared resources) among threads -
Sharing data unnecessarily between threads and using locks to access the data is
detrimental to the performance of a multi-threaded program. Hence using the
MPICH approach for multi-threaded programming is beneficial, wherever possible.
The idea is to divide your input data into non overlapping sets, and give each set to
a thread. At the end, your main thread will be responsible to collect the sub-results
from the worker threads, and combine them. This approach is also used in the
implementation of parallel versions of STL algorithms.

Excessive locking - Lock least amount of shared data and instructions as possible,
and immediately unlock after the operation is completed on the shared_data.

DR JEFF

CSUN . &) soFTwaARE
MT in Programs

comp222 Quora
Avinash K S, works at Macquarie Group

| Indatad Aiin 20N 2N12 . | Inuntad hv Alan NMalla

I/O operations after acquiring lock - 1/O operations are terribly slow compared to
CPU operations. Same goes with networking operations. Hence you should avoid
performing I/O or network operations once you acquire lock.

Creating too many threads - std::thread::hardware_concurrency() in C++ gives you
a good idea about the maximum threads you would want to create in your C++
program. If you create more threads than this, the system will become more busy in
context switches than executing your program.

Not using std::async - async helps to think about your program more like a set of
tasks, which is much easier to reason than a bunch of threads. Async is non
blocking, also frees you from the worry of creating excessive number of threads.

Not using atomics - atomics are lock free (only for few primitive data types, basic
user defined data structures) and and hence faster than using locks.

CSUN . == SOFTWARE
MT Comparison

2020-23
COMP222

s*Temporal MT

1 Coarse
= +Can assign priorities
= +less cache thrashing
= -Slower context switch

d Fine

= +Deterministic timing (for real-time)

= -More cache thrashing (need Set Assoc)
= +Faster context switch

-Wants GR partition

O SMT/HT
= +Deterministic timing (for real-time)

= -Same as Fine cache thrashing (need Set Assoc)

= +NO context switch

= +Highest performance
= -Needs Superscalar

@Fe\ DR JEFF
CSUN 25| soFTwWARE
INDIEAPPDEVELOPER
Churonns M et
NORTHRIDGE 2020-23

COMP222

Huge drop in
performance when
oversubscribed

Nice scaling

on networking-only
workloads

Quad Core

K3

a
3 / .
v 25 /
S 2
=
15
1 Some benchmarks
0.5 plateau earlier
0 than expected
| 1
1 2 4 8

Number of concurrent streams

® 64M -cmykw2 e H4M -tCcp-mixed

o 64-check-reassembly

MultiBench demonstrates a wide variety of performance characteristics.

DR JEFF
CSUN Secti B sorrware
sATE DNV o ection ® Jeff Drobman

2020-23
COMP222

ILP
Superscalar

CSUN : : B8 soFrware
s SMT Upper Pipe line & iffErobran

2020-23
COMP222

"JIF1 ID/op

ID/Op

cache

Dual-ported?

Out of Order (OOE)

CSUN
SMT/Superscalar

COMP222

Threads

Multi-issue

Scheduler

Branch

Types of EU EU

Gather Results

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2020-23

. Instruction Level Parallelism =iae

2020-23
CcO I\/I P222

* . . . Thl
** Super- Pipelining sisb
O Split some pipeline stages (4-5 - 8-11)
[Faster clock cycle = higher throughput (mips)
 Affect CPI?
superscalar

“*Super- Scalar SIsb Tt Thz h3

d Multiple Execution Units (multi-issue pipelines)m

= each EU = ICU+ALU, with shared GR’s
d Hardware + compiler schedules instruction streams

Th1l Th2

¢ Multi- Threading sisp iy
d Multiple control threads (usually 2, same/dif program) MUX | temporal
O Programs can allocate code to threads

d Automatic scheduling of control threads U
d 2 types: SMT/superscalar or temporal (interleaved: coarse/fine)

** Mlulti- Core misb . Th Th2 Th3
[Classic Parallelism: multiple copies of the CPU|jg" = ¢+ oy o

1 Multiple L1/L2 caches (one set per core)
CORE 1 H CORE 2 H CORE 3

CSUN SO VIARE
hronys Su persca | ar oo

RRRRRRRRRR 2020-23
COMP222 S

CORE ‘ |

ICU

Instructions{f § Data

“Harva = m

L1 cache

. S u p ersca | ar 6 1 b

COMP222

superscalar
One Thread — Instrl Instr2 Instr3

superscalar

Multi-Thread

‘

CSUN B sorrware
ChTomy Su persca | ar oEessention

2020-23
COMP222

What is the difference between a superscalar CPU design
and a super pipelined CPU design?

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-
7 present)

Answered just now

superscalar has >1 EU with multi-issue/ multiple pipelines. super-pipeline is a deep
pipeline with >5 stages, usually 8 or more. MIPS R4000 was the first to use super-
pipelining in 1992 with 8 stages.

a simple answer: superscalar splits EU’s with their pipelines for ILP, while super-
pipelining splits its stages for faster clock cycles.

CSUN B8 sorrware
Su persca lar oo

NORTHRIDGE

COMP122

2 Su per- Scalar SISD Thi Th2 Th3
O Multiple Execution Units (multi-issue pipelines)
5 Unit Unit Unit
= each EU = ICU+ALU, with shared GR’s

U Hardware + compiler schedules instruction streams

1/Thl ='0 pipelinel [IF | 1D | EX [MEM
12/Th2 - pipeline2 IF | ID | EX MEM

} IF | ID | EX
J IF | D | EX |
IF | ID WB |
IF MEM| WB |
IF MEM W8 |
EX |MEM WB
EX |MEM WB |

Simple superscalar pipeline. By fetching and =

dispatching two instructions at a time, a maximum of
two instructions per cycle can be completed. (IF =
Instruction Fetch, ID = Instruction Decode, EX =
Execute, MEM = Memory access, WB = Register write
back, i/ = Instruction number, t = Clock cycle [i.e., time))

CSUN : : : B8 sorrware
Threads in a Pipeline olf robman

2020-23
COMP222 4 Threads 8 Stages IKkO Lipasti-University o ISCONSIN

Fetch Decode/ Queue Reg Execute Dcache/ Reg Retire
Map Read Store Write
Buffer

; A

i :
Reos

DR JEFF

CSUN ﬁsggxyﬁﬁgE
e Superscalar on a Stack M T s

COMP222 _ Quora

Is it possible to build a superscalar stack-based CPU? E.g. a
superscalar FORTH processor?

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-
present)

Answered just now

“superscalar” means having multi-issue, multi-EU hardware in the CPU. there would be
some challenges to managing the stack, e.g. if 2 or more instructions wanted to access
the stack at the same time (same stage), there would have to be priority-based
interlocks (either hardware or software).

Stack
Frame 1

» Or separate Stack Frames

CSUN B soFrware
SMT + Superscalar g oo =75

2020-23
COMow four threads would execute independently on a superscalar with no multithreading support.

Issue slots ——

Thread A Thread B Thread C Thread D
0 061 .
B3 m
W Without MT
@
i
EEE
Issue slots —
Coarse MT Fine MT SMT
Time N EE ||
= = B by § |
== S°F LEas
= = - With MT
W [|
= [[
T
iy = e =
jii] e

Superscalar = multi-issue =2 multi-pipeline + multiple ALU

2020-23

DR JEFF
SOFTWARE

INDIE APPDEVELOPER
© Jeff Drobman

(=)

MT Graphics

CALIFORNIA
STATE UNIVERSITY

COMP222

realworldtech.com

Simultaneous

Coarse-Grained

Fine-Grained

Superscalar

Multithreading

1 IN).
-I:I--

--DD

i
|
L]

7

[
L]
_|n
i

| |

|

| | 2

LI
LILIL]
AL

L]
LB
L0
aon

| |

| |
| |

007Z00E
[
AT

EEEEN
_UBUZZ
Bl | 27V

BO0E
Vi
U
IENZ0E

ELEEJA0000
1127
Bi7| Ylils

NERRY

.

L IL]l
I

l
EEI L]

HF 4
| +n o T
= o XD £

aznatg
1] =

N

&l

|

£ |

J

JL L

LI L]|

BEEN L]

& Thread 5
1 Idle slot

1 Thread 3
Thread 4

B Thread 1
Thread 2

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

MT Graphics

A)
Conventional
Processor

B)
Coarse-grained
Multithreaded

)
Fine-grained
Multithreaded

D)
Simultaneous
Multithreaded

Thread 1

CE context switch code

Thread 2

= NENCEaE-BEAEHARA

vetaam Froen excep tion ?

Tuderma pt, ssception, oy OF e.n

Thread 1

=L FRERIEETEL

Cache mwass

l5[Els) J=lEf=L "
el 1=l |

Execution
Units

Thread 2

Cache moss

r—

—1
b — 1
_——

S

R—

- ——

Thread 1

L

Cache e,

L]
Lt LI

Thread 3

¢—> Time

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2020-23

S DR JEFF
C SUN [Dr Jeff S 0 FTWARE
AAAAAAAAAA INDIE APPDEVELOPER
UNIVER © Jeff Drob
smazs vNvE Section eff robman

2020-23
COMP222

Intel
Hyper-Threading

CSUN . (= B
Hyperthreading S e

COMP222 \ikipEDIA

The Free Encyclopedia

What is hyperthreading? Hyperthreading is a feature that allows each CPU core to emulate two cores at once, or threads. On some Xeon Phi processors, Intel
supports four-way hyperthreading, effectively quadrupling the number of threads. Prior to the Coffee Lake architecture, most Xeon and all desktop and mobile Core i3
and i7 supported hyperthreading while only dual core mobile i5's supported it. Post Coffee Lake, increased core counts meant hyperthreading is not needed for Core
i3, as it now replaced the i5 with four physical cores on the desktop platform. Core i7, on the desktop platform, no longer supports hyperthreading; instead now higher
performing core i9s will support hyperthreading on both mobile and desktop platforms. Prior to 2007 and post Kaby Lake some Intel Pentiums support hyperthreading.
Celerons and Atom processors have never supported it.

Hyper-threading (officially called Hyper-Threading Technology or HT Technology and abbreviated as

HTT or HT) is Intel's proprietary simultaneous multithreading (SMT) implementation used to improve

parallelization of computations (doing multiple tasks at once) performed on x86 microprocessors. It first

appeared in February 2002 on Xeon server processors and in November 2002 on Pentium 4 desktop

CPUs.!l Later, Intel included this technology in Itanium, Atom, and Core 'i' Series CPUs, among others.

For each processor core that is physically present, the operating system addresses two virtual (logical) cores
and shares the workload between them when possible. The main function of hyper-threading is to increase
the number of independent instructions in the pipeline; it takes advantage of superscalar architecture, in
which multiple instructions operate on separate data in parallel. With HTT, one physical core appears as two
processors to the operating system, allowing concurrent scheduling of two processes per core. In addition,
two or more processes can use the same resources: If resources for one process are not available, then
another process can continue if its resources are available.

In addition to requiring simultaneous multithreading (SMT) support in the operating system, hyper-threading
can be properly utilized only with an operating system specifically optimized for it.[°] Furthermore, Intel

recommends HTT to be disabled when using operating systems unaware of this hardware
feature [citation needed]

CSUN : B sorrware
Hyperthreading S e

COMP222 \ikipEDIA

The Free Encyclopedia
T B B B Bl EemEssl Virtual Thread Machine
b — Sits on top of Superscalar Multi-cores
RAM EEEOOE=SC0O.s -
& . - ﬁ # ﬁ ;:: - == In this high-level depiction of HTT, instructions are fetched &J
i . - - - from RAM (differently colored boxes represent the

| l—l- | instructions of four different processes), decoded and

front end

reordered by the front end (white boxes represent pipeline
bubbles), and passed to the execution core capable of
executing instructions from two different programs during the

same clock cycle.!'12l]

CPU
Intel’s proprietary HTT

Intel Hyperthreading

COMP222 “Mikko Lipasti-University of Wisconsin

Intel Hyperthreading

e Part of Pentium 4 design (Xeon)
 Two threads per processor

* Goals
— Low cost — less than 5% overhead for replicated state
— Assure forward progress of both threads
* Make sure both threads get some buffer resources
* through partitioning or budgeting
— Single thread running alone does not suffer slowdown

Intel Hyperthreading

COMP222 “Mikko Lipasti-University of Wisconsin

Intel Hyperthreading

 Main pipeline

— Pipeline prior to trace cache not shown
* Round-Robin instruction fetching

— Alternates between threads

— Avoids dual-ported trace cache
— BUT trace cache is a shared resource

Register

. Uop Sched Register Execute — .
Queue Rename Queue Read] Write
| i _> %
i | & i |*j]]* H _
- - -]
Prog. Trace Allocate Registers Registers
Counters Cache Data Cache

CSUN . . Bl sorrware
- . u INDIE APPDEVELOPER
e HT Resources & Policies ek

2020-23
COMP222 "Mikko Lipasti-University of Wisconsin
Example: Hyperthreading
 Mechanisms (and Policies) in Pentium 4
Instruction Instruction Instruction Read Memory
Fetch Dispatch Issue Registers Execute Access Write-Back Commit
Program Mechanisms
Counters part.

part. shared part. part. part. part. shared shared shared shared shared (- :-1-.-: - shared shared part. part.

ItIIIII e Rename/ !
cr;:n;: H | B Allocation Blsjifl::s Registers Execution sheited Registers
ache
Round- FR-FCFS Round- ﬁ
Robin Robin

Policies Re-Order Buffer

Intel HT Slide

2020-23

COMP222
Benefits of HT Technology
First Thread/Task Second Thread/Task
Execution
Resource
Utilization

Both Threads/Tasks without Hyper-Threading Technology

, N

Time saved

Both Threads/Tasks with Hyper-Threading Technology
An old slide from Intel, which has its own marketing term for SMT: Hyper-Threading

CSUN B sorrware
pChuromn MT on P h ones o i

2020-23
comp22; Quora

Would smartphones ever have multithreaded cores? Why?
(please see comment for more info)

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-
7 present)

Answered just now

Coarse grained Temporal MT has low silicon overhead but can produce good results. It
doesn’t require a superscalar architecture, so is less expensive than the SMT that Intel
and AMD use. | would use a 2-thread version on all cores, or at least on several cores.
Apple now has 10 CPU cores on its M1, and | bet at least some of them use MT.

CSUN B sorrware
mCuroNs MT on P h ones SRET

2020-23
comp22; Quora

David Kra, Received patents in ecommerce and microprocessor ®
~ design. Published author.

Answered 25m ago

Yes, they would, if the usage pattern changes. Multithreaded cores are appropriate
when the quantity of actively runnable application processes and threads gets large
and their performance (instructions per second) needs are low.

Remember:

e CPU Multithreading only starts to help once every core is already busy on
one thread.

e A 2-thread multithreaded core typically provides both a 20% boost in
overall throughput, and a 40% decrease in per thread performance.

e The core best achieves this boost for multithreaded applications where the
threads are executing the same small set of code, but applying them to
different pieces of data. Otherwise, the benefit is less. Good usage:
Rendering a web page with multiple images, with each thread rendering a
different image.

a—— DR JEFF
CSUN Secti B sorrware
sATE DNV o ection ® Jeff Drobman

2020-23
COMP222

Performance
CPl vs IPC

AAAAAAAAAAAA
STATE UNIVERSITY

COMP222

Peak Perf of SMT

9 DR JEFF
&) SOFTWARE
Lo
2020-23

IPC = N* (1/CPI)

v CPI=1.3-2>1/1.3=0.77

Examples for N at 1 GHz

N=1-2>IPC=0.77 2> MIPS =770
N=2-2>IPC=1.54 - MIPS = 1540

N=4->IPC=3.08 = MIPS = 3080

CSUN . . == SOFTWARE
U Wisc Slides: Perf O et Brabiman

COMP222

Time

Processor Performance = -
Program

CPI 1/f
_Instructions Cycles Time
— X -
Program Instruction Cycle
(code size) (CPI) (cycle time)

* Inthe 1980’s (decade of pipelining):
— CPI: 5.0=>1.15 MIPS

* Inthe 1990’s (decade of superscalar):
— CPI: 1.15 => 0.5 (best case)

* |nthe 2000’s (decade of multicore):

— Core CPI unchanged; chip CPI scales with #cores
Mikko Lipasti-University of Wisconsin 38

CSUN SOFTWARE
i SMT Performance
COMP222 _____ P&H zyBook —

Figure 6.4.2: The speed-up from using multithreading on one core on arocessor (COD Figure 6.6).

Processor averages 1.31 for the PARSEC benchmarks (see COD Section 6.9 (Communicating to the outside world: Cluster networking))

and the energy efficiency improvement is 1.0
2.00

3 Speedup —#— Energy efficiency

-k

\l

N
1

-

(¢

o
A

-h

n

(&)
A

i7 SMT performance and energy efficiency ratio
o
o

0.75 T L} L 1 Al 1) T T L) 1
N N
& & & og\& &8 6‘°° & & QOQ"’\\\QQ 4‘7}?
gép & o € & &
& f T T P T
o &S
=)

SUN : 2 soFrware
C E INDIEAPPDEVELOPER
Section

2020-23
COMP222

SMT ON vs OFF

MT Benchmarks

Investigating Performance of Multi-Threading on
Zen 3 and AMD Ryzen 5000

by Dr. Ian Cutress on December 3, 2020 10:00 AM EST

https://www.anandtech.com/show/16261/investigating-
performance-of-multithreading-on-zen-3-and-amd-ryzen-5000/2

“AMD Ryzen 9 3900X, SMT on vs SMT off, vs Intel 9900K”’, TechPowerUp,
https://www.techpowerup.com/review/amd-ryzen-9-3900x-smt-off-vs-intel-9900k/

https://ece757.ece.wisc.edu/lect03-cores-multithread.pdf

CSUN B sorrware
. S |V| T P ro d uct E Xam p | es i

NORTHRIDGE 2020_23
COMP222

Investigating Performance of Multi-Threading on
Zen 3 and AMD Ryzen 5000

by Dr. Ian Cutress on December 3, 2020 10:00 AM EST

We can split up the systems that use SMT:

» High-performance x86 from Intel

» High-performance x86 from AMD

= High-performance POWER/z from IBM

» Some High-Performance Arm-based designs

» High-Performance Compute-In-Memory Designs
» High-Performance Al Hardware

Comparing to those that do not:

High-efficiency x86 from Intel

All smartphone-class Arm processors

Successful High-Performance Arm-based designs

Highly focused HPC workloads on x86 with compute bottlenecks

. DR JEFF
CSUN 25| soFTwaRE
i, SMT % |PC O iaffbroman

2020-23
COMP222

\j

SM:Full Simultaneous Issue
SM:Four Issue

SM:Dual Issue
__x SM:Limited Connection

SM:Single Issue

* * ¢ Fine-Grain

Instructions Issued Per Cycle

o B N W B~ O O

1 2 3 4 5 6 7 8
Number of Threads

As the number of threads increases the number of instructions per cycle also increases improving
overall throughput except when using Fine-grain because Fine-grain is limited to how much
instruction can be executed at once.

DR JEFF

CSUN . &) soFTWARE
- SMT in AMD Ryzen (Zen 3) e

CO M P222 Simultaneous Multithreading OFF ' ON

Multi-Threaded Tests
e SMT ON vs OFF

AnandTech SMT Off
Baseline

Agisoft Photoscan 100% 98.2%
3D Particle Movement 100% 165.7%
3DPM with AVX2 100% 177.5%
y-Cruncher 100% | 94.5%
NAMD AVX2 100% 106.6%
AlBench 100% 88.2%
Blender 100% 125.1%
Corona 100% 145.5%
POV-Ray 100% 115.4%
V-Ray 100% 126.0%
CineBench R20 100% 118.6%
HandBrake 4K HEVC 100% 107.9%
7-Zip Combined 100% 133.9%

AES Crypto 100% 104.9%

STATE UNIVERSITY

CSUN

CALIFORNIA

NORTHRIDGE

COMP222
Application Benchmarks

SMT Benchmarks

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2020-23

Simultaneous Multithreading OFF ON

Relative Performance
CPU Tests

TECHP(®)WERUP

Higher is Better

TECHP(®)WERUP

Ryzen 3 1200 3.1/3.4 GHz338*810%0

Ryzen 3 2200G 3.5/3.7 GHZI4I1R0L/)

Ryzen 3 1300X 3.4/3.7 GHz343'5K%0)

Ryzen 51400 3.2/3.4 GHz: 47%28%

Ryzen 5 2400G 3.6/3.9 GHz: 52.084)

Core i3-8300 3.7 GHz: 52.1 %

Ryzen 5 1500X 3.5/3.7 GHz: 53.2 %
Core i3-9100F 3.6/4.2 GHz: 55.6 %
Core i3-8350K 4.0 GHz: 56.0 %
Ryzen 5 1600 3.2/3.6 GHz: 62.7 %
Core i5-8400 2.8/4.0 GHz: 66.3 %

Ryzen 5 1600X 3.6/4.0 GHz: 67.1 %

Core i5-9400F 2.9/4.1 GHz: 67.9 %

OME REVIEWS FORUMS DOWNLOADS CASE MOD GALLERY DATABASES v OUR SOFTWARE v

AMD Ryzen 9 3900X, SMT on vs SMT off, vs
Intel 9900K S\MT ON vs OFF

by W1zzard, on Jul 22nd, 2019, in Process_. _.

Ryzen 5 3600 3.6/4.2 GHz: 84.1 %

Core i7-8700K 3.7/4.7 GHz: 85.5 %

Ryzen 5 3600X 3.8/4.4 GHz: 85.6 %
Core i7-9700K 3.6/4.9 GHz: 85.7 %
Ryzen 7 3700X 3.6/4.4 GHz: 94.6 %

Core i19-9900K 3.6/5.0 GHz: 97.4 %

Ryzen 9 3900X SMT off: 100.0 %

Ryzen 9 3900X 3.8/4.6 GHz: 110.5 %

DR JEFF

Q

) SOFTWARE

U Wisc Slides: Benchmarks s

2020-23

COMP222 — Mikko Lipasti-University of Wisconsin

Multiprogrammed workload

250%

200% =
1T
150% — 5
100% |— s
W4T

50% |— -

0% .

Specint SpecFP Mixed Int/FP

. . Bl s oFrwaRe
CSUN () SOFTW
e | \WIse Slides: Benchmark O et Braman

NORTHRIDGE 2020‘23
COMP222 © J.E. Smith

e OLTP workload

— 21% gain in single and dual systems

— Likely external bottleneck in 4 processor systems
* Most likely front-side bus (FSB), i.e. memory bandwidth

IEINo-Hyper-Threading B Hyper-Threading Enabled |

2.5

1.5

0.5

1 Processor 2 Processors 4 Processors

DR JEFF

CSUN . . SOFTWARE

e U WIsC Slides: Benchmarks <

coMp222 © J.E. Smith ——
 Web server apps

B No Hyper-Threading B Hyper-Threading Enabled

Webserver Webserver Server-side Java
Workload (1) Workload (2) workload

© J.E. Smith

- DR JEFF
CSUN . B soFrware
AAAAAAAAAA INDIE APPDEVELOPER
TTTTTTTTTTTTT © Jeff Drob
: NORTHRIDGE SeCtIOI I eff Drobman

2020-23
COMP222

%86 CPU
AMD vs Intel

DR JEFF

(&) soFTWARE
' © Jeff Drobman
NORTHRIDGE 2020-23
comp222. _ aMpst ——— - March 2021 —
INDUSTRY LEADERSHIP
7Nl DY AO00/ IDCITIDIICT
GEOMEAN OF 22 WORKLOADS “ZEN 3" PERFORMANCE
' CONTRIBUTORS

~19%

%///////% . Cache Prefetching

Execution Engine

—_— Branch Predictor

Micro-op Cache

- Front End

Load/Store

wd =\ “ZEN "

DR JEFF

CSUN h &) soFTwaARE
e Cache Set Assoc (Ways) o

COMP222
>14nm - 2016-20 ——
L1 data cache per core (KiB) 64 16 ve
L1 data cache associativity (ways) 2 4 8
L1 instruction caches per core 1 0.5 1
Max APU total L1 instruction cache 256 128 192 256 512
(KiB)
1 instruction cache associativity
‘ 2 3 4 8 \
ways)
L2 caches per core ' 1 ‘ 0.5 ' 1 '
Max APU total L2 cache (MiB) 4 2 4

cache associativity (ways)

APU total L3 cache (MiB)

APU L3 cache associativity (ways)

L3 cache scheme Victim N/A Victim

i Intel [tanium: 1A-64
IA-64

From Wikipedia, the free encyclopedia

Not to be confused with x86-64.

IA-64 (Intel Itanium architecture) is the instruction set architecture (ISA) of the Itanium family of 64-bit Intel microprocessors. The
basic ISA specification originated at Hewlett-Packard (HP), and was evolved and then implemented in a new processor
microarchitecture by Intel with HP's continued partnership and expertise on the underlying EPIC design concepts. In order to
establish what was their first new ISA in 20 years and bring an entirely new product line to market, Intel made a massive investment
in product definition, design, software development tools, OS, software industry partnerships, and marketing. To support this effort
Intel created the largest design team in their history and a new marketing and industry enabling team completely separate from x86.
The first ltanium processor, codenamed Merced, was released in 2001.

The Itanium architecture is based on explicit instruction-level parallelism, in which the compiler decides which instructions to
execute in parallel. This contrasts with superscalar architectures, which depend on the processor to manage instruction
dependencies at runtime. In all ltanium models, up to and including Tukwila, cores execute up to six instructions per clock cycle.

In 2008, Itanium was the fourth-most deployed microprocessor architecture for enterprise-class systems, behind x86-64, Power
ISA, and SPARC.!']

CSUN B4 sorrware
e Intel x86-64 from AMD e

2020-23
COMP222

y X86-64 g g4-bit version of the
x86 instruction set, first released
in 1999. It introduced two new
modes of operation, 64-bit mode
and compatibility mode, along
with a new 4-level paging mode.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

Intel Itanium

(=)

Units

i

64 Branch &
Predicate

Data Frontside
Bus
(2x 133 Mhz)

L3 Cache - and
Systembus
Control

128

Backside Bus
from / to L3 Cache

The Intel ltanium architecture

l Integer &
Umts .,

8 Bundles

6 Instructions

il

128 Integer
Registers

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2020-23

CSUN . " B sorriiane
eSO Intel ‘s New 13t Gen O i robmman

2020-23
co Oct 2022 —

13th Gen Intel® Core ™ URIGCI

P-core Max E-coreMax

Processor Intel® Smart TotallL2 Tuto Turbo F;-co:e —
requency

Frequency
Threads Cache (L3) Cache (GHz) Fr:quer)\cy ()

Upto Upto

I9-13900K 24 (8+16) 5.8 43

Upto Upto

9-13900KF 24 (8+16) 5.8 43

Upto

i7-13700K 16(8+8) 5.4

Upto
54

i7-13700KF 16(8+8)

14(6+8)

i5-13600KF 14(6+8)

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

Intel ‘s New 13t Gen
Desktop

TotalCPU
PCle Lanes

Processors

Capacity

Oct 2022

intel® UHD
Graphics
770

n/a
intel® UHD

Graphics
770

n/a
Intel® UHD

Graphics
770

n/a

DDRS5 5600
DDR4 3200

DDRS5 5600
DDR4 3200

DDRS5 5600
DDR4 3200

DDRS 5600
DDR4 3200

DDRS5 5600
DDR4 3200

DDRS 5600
DDR4 3200

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2020-23

DR JEFF

CSUN), =0 SOFTWARE
|nte| (Pl | S St
NORTHRIDGE 2020—23

COMP222 Power Mgt

LLC - Dynamic Cache Shrink Feature

= LLC organized in 16 ways. Power Down LLC

« When PCU detects low activity workload
Flushes 14 ways of the cache and puts ways to sleep
= Shrinks active ways from 16 to 2 to improve VccMin
= When PCU detects high activity
- Expands active ways back to 16 to improve cache hit rate.

CSUN B sorrware
pChuromn In te | D eV C on 2 O 2 1 B e oo

2020-23
COMP222

2FP/Vec
Data Execution Store Data

FPNoc stacks \
\ :

2 Store AGUs

In the figure above, note the units associated with the x86 instructions using
vector-based operands, to improve performance of the “dot-product plus
accumulate” calculations inherent to deep learning software applications:

e Vector Neural Network Instructions (VNNI, providing int8 calculations)
e Advanced Vector Extensions (AVX-512, for fpl6/fp32 calculations)

CSUN 2 soFTware
Intel Dev Con 2021 S

COMP222

Intel Thread Director |

Intelligence built directly into the core

Monitors the runtime instruction mix
of each thread and as well as the state of each core — with
nanosecond precision l

Provides runtime feedback to the OS
to make the optimal scheduling decision for any workload
or workflow l

Dynamically adapts guidance
based on the thermal design point, operating conditions,

and power settings — without any user input |

Additionally, based on thread priority, an executing thread could transition
between a p-core and e-core. Also, threads may be “parked” or “unparked”.

S’I]’PI DR JEFF
Si;z;?::;;m Inte | Dev Con 2021 ey
NORTHRIDGE 2020—23

COMP222

Intel Thread Director

Scheduling Examples

Priority tasks scheduled on P-cores
Background tasks scheduled on E-cores

Al thread prioritized on P-core J
Spin loop wait moved from Pto E-core l

sTATE U Inte I Dev Con 2021 ©.ef robmar

COMP222

Thread Director

Another option is to distribute thread execution across separate (symmetric)
cores on the CPU until all cores are busy, before invoking hyperthreading.

A combination of p-cores and e-cores in the same CPU (otherwise known as
a “big/little” architecture) introduces asymmetry into the O/S scheduler
algorithm. The simplest approach would be to distinguish threads based on
foreground (performance) and background (efficiency) processes - e.g.,
using “static” rules for scheduling. For the upcoming CPUs with both p- and
e-cores, Intel has integrated additional power/performance monitoring

{3 ”

ore

CSUN Bl sorrware
e Quora AMD Zen uArch i

2020-23
COMP222

Next Address Logic

4
L1 Hashed Parceptron
L2 TAGE

L1/L2 BTE, Return Stack, ITA
L1 BTE: 512, L2 T8 7188, RAS: 32 ITA: 1024 enires

+ +
< Pradiction
Micro-Tags =

12 Boyche
Iom L2

Instruction Byte Queus
20«08

\ 4
Pick
| - — —

4-way Decoder

P
Op Cache
4 K mops. Bway. B mopa/ e

5 7 mops 5 4«30 nsir)

"-lmop:tflllﬂ'rv:ll}

Micro-OP Queue

Front End

CSUN

CALIFORNIA
STATE UNIVERSITY

(5 |k
AMD Zen uArch

© Jeff Drobman
2020-23
COMP222 Quora @ . y_l fﬁi [vs Q_ Search Quora

Front

RCU

Rename/Allocate

Retire Queue

————— g

¥

Non-Scheduling Queue

84 enines

dd

Forwarding Muxes

>

w
. Compatitively shared between threads
D Wasermarked

Store Queue . Statically partitionad
48 enies
Prefatch
ﬂ Totom L2

12 Bwefeoml2 Tol2

CSUN ey SOFTWARE
AMD Zen 3 Macro T oo

NORT GE 2020-23
comp222

)

[
{]
| I |
|L>
\
| ‘ Vs
'
!
‘ 8
!

g.

CCX = Compute Chip Complex

COMP222

DR JEFF

AMD 3D V-cache = oo

2020-23

How It's Built: AMD 3D V-Cache Technology

Mmicro H\)br\d
Bump B oﬁ A

AND /
D \F Co\c\nQ

DR JEFF

CSUN 25 soFTwARE
e AMD Radeon Benchmark O eff Brobman

2020-23
COMP222

AMDQ

RADEON | 3840x216 0

\
RX 6000 SEries | rames PerSecond

61

BORDERLANDS 3 CALL OF DUTY: GEARS OF WAR S

(0X 12) MODERN WARFARE (DX 12)
, ' (DX 12) 1Hera ’

Qad

CSUN i s sobufTJv'sEzf\EE
AAAAAAAAA INDIE APPDEVELOPEI
saTE UvE R S ection © Jeff Drobman

2020-23
COMP222

Multi-Threading
in Java

CSUN : &) sorrware
T Java Runtime i Brobman

2020-23
COMP222

ucap stacks registers l:::l:sd

runtime data areas

____________________________ T—

e S native
nat.tve metho e thor
interface

libraries

. L B8 ke
e Multi-Threading in Java oo

2020-23
COMP222 m Medium

Java.lang.Thread —
) Dmytro Timchenko
q:',, Aug 29 - 6 min

JAVA CONCURRENCY

Thread Creation

Thread A Thread B Thread C Thread D

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

| DR JEFF
SOFTWARE

Multi-Threading in Java ey

Medium Java.lang.Thread ——

How to Create a Java Thread

Java lets you create a thread one of three ways:

e By implementing the Runnable interface. .start
e By implementing the Callable interface. implements

¢ By extending the Thread. extends

Runnable Interface

The easiest way to create a thread is to create a class that implements the
Runnable interface. A Java object that implements the Runnable interface

can be executed by a Java Thread.

The Runnable interface is a standard Java Interface that comes with the
Java platform. The Runnable interface only has a single method run().

Here is an example of implementing the Runnable interface:

CSUN . L 5
e Multi-Threading in Java oo

2020-23
COMP222 Medium

Java.lang.Thread —
Run via start

There are two ways of running a thread. One of them is by calling method
start():

@Test
public void myThreadTest()
throws Exception {

Thread thread = new MyThread("Test task");
thread.start();
thread.join();

by

MyThreadTest.java hosted with « by GitHub view raw

The start() call will return as soon as the thread is started. It will not wait
until the run() method is done. The run() method will execute as if

executed by a different CPU. When the run() method executes it will print
out provided text.

CSUN . L (5 B
e Multi-Threading in Java oo

2020-23
COMP222 m Medium

Thread Subclass

The other way is to create a subclass of Thread and override the run()

Java.lang.Thread —

method. The run() method is what is executed by the thread after you call

start(). Here is an example of creating a Java Thread subclass:

public class MyThread extends Thread {
private String text;

@Override
public void run() {

System.out.printin(text);

b

MyThread.java hosted with « by GitHub view raw

CSUN : : : B sorrware
e Multi-Threading in Java oo

2020-23
COMP222 m Medium

Java.lang.Thread —

,."D, Dmytro Timchenko
qgﬂ" Aug 29 - 6 min read

JAVA CONCURRENCY
Thread Life Cycle

Thread A Thread B Thread C Thread D

DR JEFF

CSUN [] [] [| 'DrJ: ‘ SOFTWARRE
CALIFORNIA INDIE APPDEVELOPE
soaTE UV R Mu It 1- | h fea d N g N J aVva ©ef Drobman

COMP222 m Medium

Java.lang.Thread —

‘.’.5 Dmytro Timchenko
@» Aug29-sminread THREAD LIFE CYCLE

start() dead thread

waiting for lock
pannbe 3o0|

BLOCKED

CSUN . L (5 B
e Multi-Threading in Java oo

2020-23
COMP222 m Medium

Thread states

The java.lang. Thread class contains a static State enum — which defines its

Java.lang.Thread —

potential states. The thread can only be in one of these states at a time:

1. NEW — a newly created thread that has not yet started the execution

2. RUNNABLE — either running or ready for execution but it’s waiting for

resource allocation

3. WAITING — waiting for some other thread to perform a particular
action without any time limit

4. TIMED_WAITING — waiting for some other thread to perform a specific
action for a specified period

5. BLOCKED — waiting to acquire a lock to enter or re-enter a
synchronized block/method

6. TERMINATED — has completed its execution

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

DR JEFF

i : : il SOFTWARE
Multi-Threading in Java
Medium Java.lang.Thread —
NEW

A NEW Thread is a thread that’s been created but not yet started. It
remains in this state until we start it using the start() method.

The following code snippet shows a newly created thread that’s in the NEW
state:

Thread t = new MyThread();

RUNNABLE

When we’ve created a new thread and called the start() method on that, it’s
moved from NEW to RUNNABLE state. Threads in this state are either
running or ready to run, but they’re waiting for resource allocation
from the system.

In a multi-threaded environment, the Thread-Scheduler (which is part of
JVM) allocates a fixed amount of time to each thread. So it runs for a

particular amount of time, then passes the control to other RUNNABLE

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222 m

DR JEFF
SOFTWARE

Multi-Threading in Java ey

2020-23
Medium

Java.lang.Thread —

public class Waiting implements Runnable {
public static Thread threadA;

public static void main(String[] args) {
threadA = new Thread(new Waiting());
threadA.start();

public void run() {
Thread threadB = new Thread(new Sleeping());
threadB.start();
try {
threadB.join();
} catch (InterruptedException e) {
Log.error("Interrupt exception: ", e);

public static class Sleeping implements Runnable {
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
Log.error("Interrupt exception: ", e);

e DR JEFF
CSUN e

| . h d . S aRE
e Multi-Threading in Java
ELCEC Medium Java.lang.Thread —

WAITING

A thread is in WAITING state when it’s waiting for some other thread to
perform a particular action. According to JavaDocs, any thread can enter

this state by calling any one of the following three methods:

1. object.wait()
2. thread.join() or

3. LockSupport.park()

Here is an example:

public class Waiting implements Runnable {
public static Thread threadA;

public static void main(String[] args) {
threadA = new Thread(new Waiting());
threadA.start();

public void run() {
Thread threadB = new Thread(new Sleeping());
threadB.start();
try {
threadB.join();

CSUN . L 5
e Multi-Threading in Java oo

2020-23
COMP222 m Medium

Java.lang.Thread —
TIMED WAITING
A thread is in TIMED_WAITING state when it’s waiting for another
thread to perform a particular action within a specified amount of
time.
According to JavaDocs, there are five ways to put a thread on public class TimedWaiting {
TIMED_WAITING state: public static void main(String[] args) throws InterruptedException {

Thread threadA = new Thread(new Sleeping());

1. thread.sleep(long millis) Ehrelieatanttla

2. wait(int timeout) or wait(int timeout, int nanos,) // This will start processing threadA
Thread.sleep(1000);
3. thread.join(long millis) }

4. LockSupport.parkNanos . L
class Sleeping implements Runnable {
5. LockSupport.parkUntil @Override
public void run() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {

Log.error("Interrupted exception: ", e);

}

TimedWaiting.java hosted with « by GitHub

CSUN : : : Bl sorrware
mCuroNs Mu It | _Th rea d N g N Java S mraien
5 rob
COMP222 Medium
BLOCKED

Java.lang.Thread —

A thread is in the BLOCKED state when it’s currently not eligible to run. It
enters this state when it is waiting for a lock and is trying to access a
section of code that is locked by some other thread.

Here is an example:

public class Blocking {
public static void main(String[] args) throws InterruptedException {
Thread threadA = new Thread(new InfiniteClass());
Thread threadB = new Thread(new InfiniteClass());

threadA.start();
threadB.start();

Thread.sleep(1000);

class InfiniteClass implements Runnable {

@verride
public void run() {
infinityMethod();

public static synchronized void infinityMethod() {
while(true) {

CSUN . . . B sorrware
e Multi-Threading in Java e

NORTHRIDGE

COMP222 _Medium

Ml MIINATED

— Java.lang.Thread —

This is the state of a dead thread. It’s in the TERMINATED state when it
has either finished execution or was terminated abnormally.

Here is an example:

public class Terminating implements Runnable {
public static void main(String[] args) throws InterruptedException {
Thread threadA = new Thread(new Terminating());
threadA.start();

'/ The following sleep time will be enough for
// threadA is completed

Thread.sleep(1000);

@verride
public void run() {

// empty method

}

Terminating.java hosted with « by GitHub view raw

e Multi-Threading in Java oo
COMP222 m Medium Java.lang.Thread —
‘.:,'\ Dmytro Timchenko in Javarevisited 4

Sep 4 -3 minread %

T e e PV

Java Concurrency: How To Kill A Thread

In this article, we'll cover stopping a Thread in Java, what is...

CSUN : : : B sorrware
e Multi-Threading in Java oo

2020-23
COMP222 m Medium

Java.lang.Thread —

) Dmytro Timchenko
q}t}}}f‘ Aug 29 - 6 min read

JAVA CONCURRENCY
Thread Methods

Thread A Thread B Thread C Thread D

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

DR JEFF
SOFTWARE

Multi-Threading in Java o i

2020-23

COMP222 m Medium

Java.lang.Thread —

E::>>0 Thread.currentThread() Methods
* long getId() Java Concurrency: Thread Methods
® int getPriority()

=
=

Thread.State getState()

void interrupt()

dae-mon? |'dzmen | (also demon)
void join()
noun Computing

void . . :
and file transfers, and is dormant when not required.

run() // a background process that handles requests for services such as print spooling

void setDaemon(boolean on)

void setPriority(int newPriority)
static void sleep(long millis)
void start()

static void yield()

CSUN . L 5
e Multi-Threading in Java oo

COMP222 m Medium

Java.lang.Thread —

join()

regular thread flow

Main
Thread
Thread —
A
thread flow with join()
Main &
Thread

threadA.join()

Thread
A

CSUN . L 5
e Multi-Threading in Java oo

2020-23
COMP222 m Medium

interrupt()

In the multithreading programming, there are cases when you need to stop

some thread from execution — interrupt a thread. An interrupt is an
indication to a thread that it should stop what it is doing and do something
else. It’s up to the programmer to decide exactly how a thread responds to

an interrupt, but it is very common for the thread to terminate.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

DR JEFF
SOFTWARE

Multi-Threading in Java ey

Medium

Java.lang.Thread —

Thread.currentThread()

This method is available in package java.lang.Thread. It is used to return a

reference to the currently executing thread object. This is a static method so

it is accessible with a class name too. The return type of this method is

Thread, it returns a reference of currently executing thread object. It does

not raise any exception.

class ThreadA extends Thread {
public void run() {
System.out.println("The name

class ThreadB extends Thread {
public void run() {

System.out.println("The name

public class MainThread {
public static void main(Stringl[]

System.out.println("The name

of this thread is " + " " 4 Thread.currentThread().

of this thread is " + " " + Thread.currentThread().

args) {

of this thread is " + " " + Thread.currentThread().

ThreadA threadA = new ThreadA();

threadA.start();

2 EFF
CSUN : 859 sorrware
AAAAAAAAAA INDII L
saTE UvE R S ection © Jeff Drobman

2020-23
COMP222

l@
(@)

rallel Processing

MP/SMP

SIMD
MM/ AV JAMIX
ILP

0000

Parallel Processing
COMP222 COMP 122: Computer
P&H Ch 6 Architecture and

Assembly Language
Spring 2020

Figure 6.1.2: Hardware/software categorization
and examples of application perspective on
concurrency versus hardware perspective on
parallelism (COD Figure 6.1).

—

Matrix Multiply written in MatLab Windows Vista Operating System
running on an Intel Pentium 4 running on an Intel Pentium 4

Hardware
Matrix Multiply written in MATLAB Windows Vista Operating System

Paraliel running on an Intel Core |7 running on an Intel Core I7

Parallel Processing
COMP222 P&H Ch 6

Multiprocessor. A computer system with at least two processors. This computer is in contrast to a uniprocessor, which has one, and is
increasingly hard to find today.

Since multiprocessor software should scale, some designs support operation in the presence of broken hardware; that is, if
a single processor fails in a multiprocessor with n processors, these systems would continue to provide service withn - 1
processors. Hence, multiprocessors can also improve availability (see COD Chapter 5 (Large and Fast: Exploiting Memory
Hierarchy)).

High performance can mean high throughput for independent tasks, called task-level parallelism or process-level PARALLELISH
parallelism. These tasks are independent single-threaded applications, and they are an important and popular use of

multiple processors. This approach is in contrast to running a single job on multiple processors. We use the term parallel processing
program to refer to a single program that runs on multiple processors simultaneously.

Task-level parallelism or process-level parallelism: Utilizing multiple processors by running independent programs simultaneously.

Parallel processing program: A single program that runs on multiple processors simultaneously.

There have long been scientific problems that have needed much faster computers, and this class of problems has been used to justify
many novel parallel computers over the decades. Some of these problems can be handled simply today, using a cluster composed of
microprocessors housed in many independent servers (see COD Section 6.7 (Clusters, warehouse scale computers, and other message-
passing multiprocessors)). In addition, clusters can serve equally demanding applications outside the sciences, such as search engines,
Web servers, email servers, and databases.

Cluster. A set of computers connected over a local area network that function as a single large multiprocessor.

Parallel Processing
COMP222 P&H Ch 6

The difficulty with parallelism is not the hardware; it is that too few important application programs have been rewritten to complete tasks
sooner on multiprocessors. It is difficult to write software that uses multiple processors to complete one task faster, and the problem gets
worse as the number of processors increases.

Why has this been so? Why have parallel processing programs been so much harder to develop than sequential programs?

The first reason is that you must get better performance or better energy efficiency from a parallel processing program on a multiprocessor,
otherwise, you would just use a sequential program on a uniprocessor, as sequential programming is simpler. In fact, uniprocessor design
techniques such as superscalar and out-of-order execution take advantage of instruction-level parallelism (see COD Chapter 4 (The
Processor)), normally without the involvement of the programmer. Such innovations reduced the demand for rewriting programs for
multiprocessors, since programmers could do nothing and yet their sequential programs would run faster on new computers.

Why is it difficult to write parallel processing programs that are fast, especially as the number of processors increases? In COD Chapter 1
(Computer Abstractions and Technology), we used the analogy of eight reporters trying to write a single story in hopes of doing the work
eight times faster. To succeed, the task must be broken into eight equal-sized pieces, because otherwise some reporters would be idle
while waiting for the ones with larger pieces to finish. Another speed-up obstacle could be that the reporters would spend too much time
communicating with each other instead of writing their pieces of the story. For both this analogy and parallel programming, the challenges
include scheduling, partitioning the work into parallel pieces, balancing the load evenly between the workers, time to synchronize, and
overhead for communication between the parties. The challenge is stiffer with the more reporters for a newspaper story and with the more
processors for parallel programming.

Parallel Processing
COMP222 P&H Ch 6

Multicore microprocessor. A microprocessor containing multiple processors (‘cores") in a single integrated circuit. Virtually all
microprocessors today in desktops and servers are multicore.

Shared memory multiprocessor (SMP): A parallel processor with a single physical address space.

The state of technology today means that programmers who care about performance must become parallel programmers, for sequential
code now means slow code.

The tall challenge facing the industry is to create hardware and software that will make it easy to write correct parallel processing programs
that will execute efficiently in performance and energy as the number of cores per chip scales.

My library > COMP 222: Computer Organization h... >

zyBooks ¢ ,, Difficulty of parallel programs

@ AdoptazyBook B Instructorforum @ Help/FAQ & Jeffre

Strong scaling: Speed-up achieved on a multiprocessor without increasing the size of the problem.

Weak scaling: Speed-up achieved on a multiprocessor while increasing the size of the problem proportionally to the increase in the

number of processors.
Note that the memory hierarchy can interfere with the conventional wisdom about weak scaling being easier than strong A
scaling. For example, if the weakly scaled dataset no longer fits in the last level cache of a multicore microprocessor, the ‘
resulting performance could be much worse than by using strong scaling.

Depending on the application, you can argue for either scaling approach. For example, the TPC-C debit-credit database -

. ERARC Y
hancrbhmarl raniiirae that vnit ecala 11 thae niimhbar nf frrietamar arcent inte in nnraonnartinm tn the hinnhar trancarntinne nar i “

STATE UNIVERSITY

COMP222

I-D Parallelism: SIMD

m DR JEFF
B3 sorrware
© Jeff Drobman
2020-23

Multiple (M)

Single (S)

Flynn Partition

Michael J. Flynn paper (U lllinois (UIUC), Ca 1969)

Instructions

Multi-core Supercomputer
M I GPU
SMT ‘

SD | MD —
Superscalar SI /

SIMD

Single-core ‘ Vector Processor

Data

gre DR JEFF
CSUN Q SOFTWARE
CALIFORNIA S I M D @)INfgf}'PEL;-EOVE%PaE;
T NORTHRIDGE 020.25

COMP222 P&H Ch 6
6.3 SISD, MIMD, SIMD, SPMD, and vector [J Present BB Note

(Original section’)

One categorization of parallel hardware proposed in the 1960s is still used today. It was based on the number of instruction streams and
the number of data streams. The figure below shows the categories. Thus, a conventional uniprocessor has a single instruction stream and
single data stream, and a conventional multiprocessor has multiple instruction streams and multiple data streams. These two categories

are abbreviated SISD and MIMD, respectively.

SISD or single instruction stream, single data stream: A uniprocessor.

MIMD or multiple instruction streams, multiple data streams: A multiprocessor.

Figure 6.3.1: Hardware categorization and
examples based on number of instruction
streams and data streams: SISD, SIMD, MISD,
and MIMD (COD Figure 6.2).

Data Streams
I S

nstruction | Sn@e SISD: Intel Pentium 4 sw&sssmmc"mm%‘

Streams Multiple MISD: No examples today MIMD: Intel Core i7

' DR JEFF
CSUN IQI SOFTWARE
peChrony S| MD oesrronmomn
NORTHRIDGE 2020—23
COMP222 DLP P&RHCh6 __

Data-level parallelism: Parallelism achieved by performing the same operation on independent data.

The so-called array processors that inspired the SIMD category have faded into history (see COD Section 6.15 (Historical perspective and
further reading)), but two current interpretations of SIMD remain active today.

SIMD in x86: Multimedia extensions

As described in COD Chapter 3 (Arithmetic for Computers), subword parallelism for narrow integer data was the original
inspiration of the Multimedia Extension (MMX) instructions of the x86 in 1996. As Moore's Law continued, more
instructions were added, leading first to Streaming SIMD Extensions (SSE) and now Advanced Vector Extensions (AVX). AVX
supports the simultaneous execution of four 64-bit floating-point numbers. The width of the operation and the registers is
encoded in the opcode of these multimedia instructions. As the data width of the registers and operations grew, the
number of opcodes for multimedia instructions exploded, and now there are hundreds of SSE and AVX instructions (see
COD Chapter 3 (Arithmetic for Computers)).

MOORE'S LAW

SSE = AVX

Vector

identified with computers designed by Seymour Cray starting in the 1970s. It is also a great match to problems with lots of

data-level parallelism. Rather than having 64 ALUs perform 64 additions simultaneously, like the old array processors, the

vector architectures pipelined the ALU to get good performance at lower cost. The basic philosophy of vector architecture '

is to collect data elements from memory, put them in order into a large set of registers, operate on them sequentially in .
registers using pipelined execution units, and then write the results back to memory. A key feature of vector architectures PIPELINING
is then a set of vector registers. Thus, a vector architecture might have 32 vector registers, each with 64 64-bit elements.

An older and, as we shall see, more elegant interpretation of SIMD is called a vector architecture, which has been closely ‘.

@% DR JEFF
CSUN IQI SOFTWARE
CALIFORNIA I M D @INfgf}PEL;-EOVEI;;PaE;
T NORTHRIDGE S

COMP222 PRHChE =

Example 6.3.1: Comparing vector to conventional code.

Suppose we extend the MIPS instruction set architecture with vector instructions and vector registers. Vector operations use the same
names as MIPS operations, but with the letter "V" appended. For example, addv. d adds two double-precision vectors. The vector
instructions take as their input either a pair of vector registers (addv.d) or a vector register and a scalar register (addvs.d). In the
latter case, the value in the scalar register is used as the input for all operations—the operation addvs.d will add the contents of a
scalar register to each element in a vector register. The names lv and sv denote vector load and vector store, and they load or store an
entire vector of double-precision data. One operand is the vector register to be loaded or stored; the other operand, which is a MIPS
general-purpose register, is the starting address of the vector in memory. Given this short description, show the conventional MIPS code
versus the vector MIPS code for

Y-axX+y MADD

where X and Y are vectors of 64 double precision floating-point numbers, initially resident in memory, and a is a scalar double precision
variable. (This example is the so-called DAXPY loop that forms the inner loop of the Linpack benchmark; DAXPY stands for double
precision a x X plus Y.). Assume that the starting addresses of X and Y are in $s0@ and $s1, respectively.

»addv.d
»addvs.d

DR JEFF

CSUN : &)sorrware
SIMD ISA Extensions
COMP222
“*SIMD
= MIPS
* ARM

*MMX = Multi-Media Extensions
¢ SSE = Streaming SIMD Extensions

"

** AVX = Advanced Vector Extensions

= |ntel
= AMD

CSUN . soD?TJv'fizSE
COMP222 SIMD / AV X Extensions ©ef Drobman

Integer or FP 128/256/512 Bits Wide all subword sizes

B/H/W/D
> AVX128/256/512 i

Wide Register 1
Wide Register 2

Wide Register 3

N x 8/16/32/64

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

SIMD

Answer

Here is the conventional MIPS code for DAXPY:

1.d
addiu
1.d
mul.d
1.d
add.d
s.d
addiu
addiu
subu
bne

loop:

Here is the vector MIPS code for DAXPY: l

$f0,
$t0,
$f2,
$f2,
$f4,
$f4,
$f4,
$s0,
$s1,
$t1,
$t1,

a($sp)
$s0, #512
0($s0)
$f2, $f0
0(%$s1)
$f4, $f2
0($s1)
$s0, #8
$s1, #8
$t0, $s0
$zero, loop

1.d

lv
mulvs.d
lv
addv.d
SV

$fo,
$vl,
$v2,
$v3,
$v4,
$v4,

a($sp)
0($s0)
$vl, $f0
0($s1)
$v2, $v3
0($s1)

@ DR JEFF
|§| SOFTWARE

© Jeff Drobman
2020-23

PRHCh6

MIPS

: load scalar a

: upper bound of what to load
: load x(1i)

: a x x(i)

: load y(1i)

:a x x(i) + y(i)

: store into y(i)

: increment index to X
: increment index to y
: compute bound

: check if done

: load scalar a

: load vector x

: vector-scalar multiply
: load vector y

: add y to product

: store the result

DR JEFF
CSUN IQI SOFTWARE
peChrony S| |V| D oesrronmomn
NORTHRIDGE 2020—23
COMP222 P&H Ch 6

There are some interesting comparisons between the two code segments in this example. The most dramatic is that the vector processor
greatly reduces the dynamic instruction bandwidth, executing only 6 instructions versus almost 600 for the traditional MIPS architecture.
This reduction occurs both because the vector operations work on 64 elements at a time and because the overhead instructions that
constitute nearly half the loop on MIPS are not present in the vector code. As you might expect, this reduction in instructions fetched and
executed saves energy.

Another important difference is the frequency of pipeline hazards (COD Chapter 4 (The Processor)). In the straightforward
MIPS code, every add. d must wait fora mul.d, every s.d must wait for the add.d and every add.d and mul.d must
wait on 1.d. On the vector processor, each vector instruction will only stall for the first element in each vector, and then
subsequent elements will flow smoothly down the pipeline. Thus, pipeline stalls are required only once per vector operation,
rather than once per vector element. In this example, the pipeline stall frequency on MIPS will be about 64 times higher
than it is on the vector version of MIPS. The pipeline stalls can be reduced on MIPS by using loop unrolling (see COD
Chapter 4 (The Processor)). However, the large difference in instruction bandwidth cannot be reduced.

PIPELINING

Since the vector elements are independent, they can be operated on in parallel, much like subword parallelism for AVX instructions. All
modern vector computers have vector functional units with multiple parallel pipelines (called vector lanes; see COD Figures 6.2 (Hardware
categorization and examples ...) and 6.3 (Using multiple functional units to improve the performance ...)) that can produce two or more
results per clock cycle.

Elaboration

The loop in the example above exactly matched the vector length. When loops are shorter, vector architectures use a register that
reduces the length of vector operations. When loops are larger, we add bookkeeping code to iterate full-length vector operations and
to handle the leftovers. This latter process is called strip mining.

S—— DR JEFF
CSUN IQI SOFTWARE
peChrony S| |\/| D oesrronmomn
NORTHRIDGE 2020—23
COMP222 P&H Ch 6

Vector versus scalar

Vector instructions have several important properties compared to conventional instruction set architectures, which are called scalar
architectures in this context:

= Asingle vector instruction specifies a great deal of work—it is equivalent to executing an entire loop. The instruction fetch and decode
bandwidth needed is dramatically reduced.

= By using a vector instruction, the compiler or programmer indicates that the computation of each result in the vector is independent
of the computation of other results in the same vector, so hardware does not have to check for data hazards within a vector
instruction.

= Vector architectures and compilers have a reputation of making it much easier than when using MIMD multiprocessors to write
efficient applications when they contain data-level parallelism.

» Hardware need only check for data hazards between two vector instructions once per vector operand, not once for every element
within the vectors. Reduced checking can save energy as well as time.

= Vector instructions that access memory have a known access pattern. If the vector's elements are all adjacent, then fetching the
vector from a set of heavily interleaved memory banks works very well. Thus, the cost of the latency to main memory is seen only
once for the entire vector, rather than once for each word of the vector.

= Because an entire loop is replaced by a vector instruction whose behavior is predetermined, control hazards that would normally arise
from the loop branch are nonexistent.

= The savings in instruction bandwidth and hazard checking plus the efficient use of memory bandwidth give vector architectures
advantages in power and energy versus scalar architectures.

For these reasons, vector operations can be made faster than a sequence of scalar operations on the same number of data items, and
designers are motivated to include vector units if the application domain can often use them.

s DR JEFF
CSUN IQI SOFTWARE
peChrony S | |\/| D oesrronmomn
NORTHRIDGE 2020—23
COMP222 P&H Ch 6

Figure 6.3.2: Using multiple functional units to improve the performance of a single vector add
instruction, C = A+ B (COD Figure 6.3).

The vector processor (a) on the left has a single add pipeline and can complete one addition per cycle. The vector processor (b) on the
right has four add pipelines or lanes and can complete four additions per cycle. The elements within a single vector add instruction are
interleaved across the four lanes.

Al9] B[9]
A8l (B8]
A7Y| (B[]
OIRED
AlS)| |BI5]
A4l [B4]
Al3] B[3]
A2l |B[2] Al8]| |BI8]| |AIS]] |BI9]
All| [B1] A4l (B4l (Al [B[S)| [Ae)| [B[6]| [A[7]| [B[7]
l+l l+l l+l l+l
clo] { [cio) ci1] c[2) cil|

__

Element group

(a) (b)

CSUN DR JEFF
Vector lane: One or more vector functional units) SOFTWARE

INDIE APPDEVELOPER
CALIFORNIA
STATE UNIVERSITY © Jeff Drobman

traffic speed, multiple lanes execute vector opera 2020-23

COMP222 P&H Ch6

The vector-register storage is divided across the lanes, with each |lane holding every fourth element of each vector register. The figure
shows three vector functional units: an FP add, an FP multiply, and a load-store unit. Each of the vector arithmetic units contains four
execution pipelines, one per lane, which acts in concert to complete a single vector instruction. Note how each section of the vector-
register file only needs to provide enough read and write ports (see COD Chapter 4 (The Processor)) for functional units local to its lane.

Lane 0 Lane 1 Lane 2 Lane 3

Y=aX+Db

Generally, vector architectures are a very efficient way to execute data parallel processing programs; they are better matches to compiler
technology than multimedia extensions; and they are easier to evolve over time than the multimedia extensions to the x86 architecture.

Given these classic categories, we next see how to exploit parallel streams of instructions to improve the performance of a single
processor, which we will reuse with multiple processors.

a9 DR JEFF
CSUN 88 soFTware
CALIFORNIA I M D @INfgf}PEL;-EO‘/EI;?’PaE;
RRE S 2 rob

COMP222 P&HCh6

Elaboration

Given the advantages of vector, why aren't they more popular outside high-performance computing? There were concerns about the
larger state for vector registers increasing context switch time and the difficulty of handling page faults in vector loads and stores,
and SIMD instructions achieved some of the benefits of vector instructions. In addition, as long as advances in instruction level
parallelism could deliver on the performance promise of Moore's Law, there was little reason to take the chance of changing

architecture styles.

Elaboration

Another advantage of vector and multimedia extensions is that it is relatively easy to extend a scalar instruction set architecture
with these instructions to improve performance of data parallel operations.

Elaboration

The Haswell-generation x86 processors from Intel support AVX2, which has a gather operation but not a scatter operation.

DR JEFF

CSUN 25| soFTwaRE
Parallel Data: AVX i

COMP222 AVX

Advanced Vector Extensions

From Wikipedia, the free encyclopedia

Advanced Vector Extensions (AVX, also known as Sandy Bridge New Extensions) are extensions to the x86 instruction set architecture for microprocessors from
Intel and AMD proposed by Intel in March 2008 and first supported by Intel with the Sandy Bridgel'! processor shipping in Q1 2011 and later on by AMD with the
Bulldozer!?] processor shipping in Q3 2011. AVX provides new features, new instructions and a new coding scheme.

AVX2 (also known as Haswell New Instructions) expands most integer commands to 256 bits and introduces fused multiply-accumulate (FMA) operations. They were
first supported by Intel with the Haswell processor, which shipped in 2013.

AVX-512 expands AVX to 512-bit support using a new EVEX prefix encoding proposed by Intel in July 2013 and first supported by Intel with the Knights Landing
processor, which shipped in 2016.314]

**AVX = Advanced Vector Extensions
= AVX (128-bit)
= AVX2 (256-bit)
= AVX-512

CSUN

DR JEFF

o SOFTWARE
Xx86 Register Chart oo
2020-23
COMP222
zmMmo [ymmo (Mo][zmm1 [ymm1 (vv1] | ST(0)[MMO || ST(1) MM1 2| [vswicrd| CR4 | </
zmm2 [yMM2 [z || zmm3 [YMM3 [xvM3]| | sT(2) [MM2 | 3] { cr1 || cr5 |
ZMM4 [YMM4 [vMa][zMM5 [YMM5 XMMS || | ST(4) [MM4 | { CR2 | CR6 |
ZMM6 [YMM6 [MM6 | ZMM7 [YMM7_[av7 || [75{;@7)[7@4944[7751(77)”_7M7M1 }]@ongox [-muauqsqw | crR3 | cr7 |
zMM8 [YMM8 [MM8]| ZMM9 [YMM9 [xMve || [rEPEBPRBP| [ZDIEDIRDI| [P EF RIP| | MXCSR| CRS |
zMM10 [YMM10[MM10)(zMM11 [ymMm1imid] | cw | Fp_ip|Fp_DP|Fp_cs| [ETSIES] RS [FFUSPESPIRSP) [CRO |
zMM12 [YMM12 fvmi2)| zMM13 [YMM13 vvis]| | sw | CR10
\{Ml“ "YMM14 [XMM14|” ZMM15 |YMM15 XMMlsll ‘—TKN-J I s:bit register | ?:-b:t l:i:glf:;fr B s0-bit register | 256-bit regfster 1@}£J \/
e S W 16-bitregister [64-bit register || 128-bit register [} 512-bit register =
ZMMIGH’ZMMI%[ZMMlB](ZMM]quMM2Q[ZMMZIIFZMM23{ ZMMZ% FP DSI IL(_‘;Rf_lZ}
7 s B o G e e e s sy T
' | pr1 | DR7 | [CR14]
----------- | DR2 || DR8 | |[CR15]

m_ﬁSJ GFLAaS RFLA(:S 1 L
\ DR3 | DR9

| DR4 | DR10{DR12 | DR14 |
| DR5 || DR11|[DR13 | DR15

**8/16/32/64 bit basic registers

*128/256/512 bit MMX extended registers

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

Parallel Data: AVX

New instructions

[edit]

These AVX instructions are in addition to the ones that are 256-bit extensions of the legacy 128-bit SSE instructions; most are
usable on both 128-bit and 256-bit operands.

Instruction

VBROADCASTSS ,
VBROADCASTSD ,

VBROADCASTF128

VINSERTF128

VEXTRACTF128

VMASKMOVPS ,
VMASKMOVPD

VPERMILPS ,
VPERMILPD

VPERM2F128

VZEROALL

VZEROUPPER

Description

Copy a 32-bit, 64-bit or 128-bit memory operand to all elements of a XMM or YMM vector register.

Replaces either the lower half or the upper half of a 256-bit YMM register with the value of a 128-bit
source operand. The other half of the destination is unchanged.

' Extracts either the lower half or the upper half of a 256-bit YMM register and copies the value to a 128-
bit destination operand.

Conditionally reads any number of elements from a SIMD vector memory operand into a destination
register, leaving the remaining vector elements unread and setting the corresponding elements in the
destination register to zero. Alternatively, conditionally writes any number of elements from a SIMD
vector register operand to a vector memory operand, leaving the remaining elements of the memory
operand unchanged. On the AMD Jaguar processor architecture, this instruction with a memory source
operand takes more than 300 clock cycles when the mask is zero, in which case the instruction should

do nothing. This appears to be a design flaw.(®]

Permute In-Lane. Shuffle the 32-bit or 64-bit vector elements of one input operand. These are in-lane
256-bit instructions, meaning that they operate on all 256 bits with two separate 128-bit shuffles, so

they can not shuffle across the 128-bit lanes.®]

Shuffle the four 128-bit vector elements of two 256-bit source operands into a 256-bit destination
' operand, with an immediate constant as selector.

Set all YMM registers to zero and tag them as unused. Used when switching between 128-bit use and

256-bit use.

| Set the upper half of all YMM registers to zero. Used when switching between 128-bit use and 256-bit
use.

AVX =

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2020-23

CSUN Bl sorrware

. P ara | | e | D ata: AVX el
NORTHRIDGE 2020_23

COMP222 X

CPUs with AVX [edit]

« Intel IntEI
« Sandy Bridge processors, Q1 2011('0]

» Sandy Bridge E processors, Q4 2011[11]

« vy Bridge processors, Q1 2012

* vy Bridge E processors, Q3 2013

« Haswell processors, Q2 2013

» Haswell E processors, Q3 2014

» Broadwell processors, Q4 2014

» Skylake processors, Q3 2015

» Broadwell E processors, Q2 2016

« Kaby Lake processors, Q3 2016(ULV mobile)/Q1 2017(desktop/mobile)
» Skylake-X processors, Q2 2017

e Coffee Lake processors, Q4 2017

e Cannon Lake processors, Q2 2018

* Whiskey Lake processors, Q3 2018

e Cascade Lake processors, Q4 2018

» Ice Lake processors, Q3 2019

¢ Comet Lake processor (only Core branded), Q3 2019
¢ Tiger Lake processor, 2020

Not all CPUs from the listed families support AVX. Generally, CPUs with the commercial denomination "Core i3/i5/i7" support them, whereas "Pentium" and "Celeron"
CPUs don't.

CSUN B8 soFrware

CCCCCCC
TTTTTTTTT
RRRRRRR

COMP22

A

DGE

i Intel “Lake” Models
14 nm . :
10 nm Improvised chipsduetolOnm ddays

*
Skylake | :'A.-{Kdnyuce > Coffeelake |~ Comet Lake

M ' = -Sunny Cove
2015 [26 2817 [@8 | 2019

CSUN 8 sorrware
S Parallel Data: AVX o i orobmr

2020-23
COMP222 AVX

» Jaguar-based processors and newer

« AMD:

* Puma-based processors and newer
» "Heavy Equipment" processors
« Bulldozer-based processors, Q4 201112
« Piledriver-based processors, Q4 201217
e Steamroller-based processors, Q1 2014
e Excavator-based processors and newer, 2015
e Zen-based processors, Q1 2017
e Zen+-based processors, Q2 2018 m
* Zen 2-based processors, Q3 2019
e Zen 3 processors, 2020

CSUN . . &) sorrware
mCuroNs AMD uArc h Time | ine SRET

2020-23
COMP222

B

¥ fmgm

CSUN B sorrware

. Para | | e | Data: AVX Lo firr ot
NORTHRIDGE 2020_23

COMP222

Advanced Vector Extensions 2 [edi] AVX2

Advanced Vector Extensions 2 (AVX2), also known as Haswell New Instructions,® is an expansion of the AVX instruction set introduced in Intel's Haswell
microarchitecture. AVX2 makes the following additions:

expansion of most vector integer SSE and AVX instructions to 256 bits
three-operand general-purpose bit manipulation and multiply

Gather support, enabling vector elements to be loaded from non-contiguous memory locations
DWORD- and QWORD-granularity any-to-any permutes
vector shifts.

Sometimes another extension using a different cpuid flag is considered part of AVX2; those instructions are listed on their own page and not below:

« three-operand fused multiply-accumulate support (FMA3)
New instructions |edit)

Instruction Description

VBROADCASTSS , Copy a 32-bit or 64-bit register operand to all elements of a XMM or YMM vector register. These are register versions of the same
VBROADCASTSD instructions in AVX1. There is no 128-bit version however, but the same effect can be simply achieved using VINSERTF128.
VPBROADCASTB ,
VPBROADCASTW , . : ;

Copy an 8, 16, 32 or 64-bit integer register or memory operand to all elements of a XMM or YMM vector register.
VPBROADCASTD ,

VPBROADCASTQ
VBROADCASTI128 Copy a 128-bit memory operand to all elements of a YMM vector register.
Replaces either the lower half or the upper half of a 256-bit YMM register with the value of a 128-bit source operand. The other half of the

VINSERTI128 o
destination is unchanged.
VEXTRACTI128 Extracts either the lower half or the upper half of a 256-bit YMM register and copies the value to a 128-bit destination operand.
VGATHERDPD ,
VGATHERQPD ,

VGATHERDPS _ Gathers single or double precision floating point values using either 32 or 64-bit indices and scale.

CSUN Bl sorrware
. Pa ra | | e | D ata: AVX F i

2020-23
COMP222 S

CPUs with AVX2 | edit]

¢ Intel

« Haswell processor (only Core branded), Q2 2013
+ Haswell E processor (only Core branded), Q3 2014
* Broadwell processor (only Core branded), Q4 2014
» Broadwell E processor (only Core branded), Q3 2016
» Skylake processor (only Core branded), Q3 2015
« Kaby Lake processor (only Core branded), Q3 2016(ULV mobile)/Q1 2017 (desktop/mobile)
» Skylake-X processor (only Core branded), Q2 2017
» Coffee Lake processor (only Core branded), Q4 2017
+ Cannon Lake processor, Q2 2018
» Cascade Lake processor, Q2 2019
» |ce Lake processor, Q3 2019
+ Comet Lake processor (only Core branded), Q3 2019
» Tiger Lake processor, 2020
« AMD
» Excavator processor and newer, Q2 2015
¢ Zen processor, Q1 2017
e Zen+ processor, Q2 2018
s Zen 2 processor, Q3 2019
e Zen 3 processor, 2020
o VIA:

+ Nano QuadCore

AVX-512 « Eden X4

AVX-512 are 512-bit extensions to the 256-bit Advanced Vector Extensions SIMD instructions for x86 instruction set architecture proposed by Intel in July 2013, and
are supported with Intel's Knights Landing processor.!®]

CSUN 8 sorrware
S Parallel Data: AVX o i orobmr

NORTHRIDGE 2020_23
COMP222 AVX51D —

AVX-512 are 512-bit extensions to the 256-bit Advanced Vector Extensions SIMD instructions for x86 instruction set architecture proposed by Intel in July 2013, and
are supported with Intel's Knights Landing processor. !

AVX-512 instruction are encoded with the new EVEX prefix. It allows 4 operands, 7 new 64-bit opmask registers, scalar memory mode with automatic broadcast,
explicit rounding control, and compressed displacement memory addressing mode. The width of the register file is increased to 512 bits and total register count
increased to 32 (registers ZMMO0-ZMM31) in x86-64 mode.

AVX-512 consists of multiple extensions not all meant to be supported by all processors implementing them. The instruction set consists of the following:

« AVX-512 Foundation — adds several new instructions and expands most 32-bit and 64-bit floating point SSE-SSE4.1 and AVX/AVX2 instructions with EVEX coding
scheme to support the 512-bit registers, operation masks, parameter broadcasting, and embedded rounding and exception control

« AVX-512 Conflict Detection Instructions (CD) — efficient conflict detection to allow more loops to be vectorized, supported by Knights Landing!®]

« AVX-512 Exponential and Reciprocal Instructions (ER) — exponential and reciprocal operations designed to help implement transcendental operations, supported
by Knights Landing!®!

« AVX-512 Prefetch Instructions (PF) — new prefetch capabilities, supported by Knights Landing®®!

« AVX-512 Vector Length Extensions (VL) — extends most AVX-512 operations to also operate on XMM (128-bit) and YMM (256-bit) registers (including XMM16-
XMM31 and YMM16-YMM31 in x86-64 mode)/22!

« AVX-512 Byte and Word Instructions (BW) — extends AVX-512 to cover 8-bit and 16-bit integer operations!22]

« AVX-512 Doubleword and Quadword Instructions (DQ) — enhanced 32-bit and 64-bit integer operations!??]

« AVX-512 Integer Fused Multiply Add (IFMA) — fused multiply add for 512-bit integers.[231:746

« AVX-512 Vector Byte Manipulation Instructions (VBMI) adds vector byte permutation instructions which are not present in AVX-512BW.

« AVX-512 Vector Neural Network Instructions Word variable precision (4VNNIW) — vector instructions for deep learning.

« AVX-512 Fused Multiply Accumulation Packed Single precision (4FMAPS) — vector instructions for deep learning.

« VPOPCNTDQ - count of bits set to 1.24]

« VPCLMULQDQ - carry-less multiplication of quadwords. (24!

« AVX-512 Vector Neural Network Instructions (VNNI) — vector instructions for deep learning.[24]

« AVX-512 Galois field New Instructions (GFNI) — vector instructions for calculating Galois field.[24]

« AVX-512 Vector AES instructions (VAES) - vector instructions for AES coding.24]

« AVX-512 Vector Byte Manipulation Instructions 2 (VBMI2) - byte/word load, store and concatenation with shift.[24]

« AVX-512 Bit Algorithms (BITALG) — byte/word bit manipulation instructions expanding VPOPCNTDQ.[24]

CSUN SO VIARE

CALIFORNIA [INDIE APPDEVELOPER
oy Parallel Data: AVX © el rotman
CPUs with AVX-512 [edt] AVX512 —

AVX-512 Subset F CD ER PF 4FMAPS 4VNNIW VL DQ BW IFMA VBMI VBMI2 VPOPCNTDQ BITALG VNNI VPCLMULQDQ GFNI VAES

Intel Knights
Landing (2016)

Intel Knights
Mill (2017)

Intel Skylake-
SP, Skylake-X
(2017)
Intel Cannon
Lake (2018)
Intel Cascade
Lake-SP (2019)

Intel Ice Lake
(2019)

[25]

As of 2020, there are no AMD CPUs that support AVX-512, and AMD has not yet released plans to support AVX-512.

Compilers supporting AVX-512 |[edit)

« GCC 4.9 and newer!2¢]

« Clang 3.9 and newer!27]

« ICC 15.0.1 and newerl2®]

« Microsoft Visual Studio 2017 C++ Compiler'2°]
« Java 930

« Go 1.11081]
o Julial®2133]

CSUN B4 soFrware

STA

NORTHRIDGE

INDIEAPPDEVELOPER
i Parallel Data: AVX

COMP222

2020-23
AVX

Applications |edit]

Suitable for floating point-intensive calculations in multimedia, scientific and financial applications (AVX2 adds support for integer operations).
Increases parallelism and throughput in floating point SIMD calculations.

Reduces register load due to the non-destructive instructions.

Improves Linux RAID software performance (required AVX2, AVX is not sufficient)[*4]

Software |edit)

Blender uses AVX2 in the render engine cycles.

Botan uses both AVX and AVX2 when available to accelerate some algorithms, like ChaCha.

Crypto++ uses both AVX and AVX2 when available to accelerate some algorithms, like Salsa and ChaCha.

OpenSSL uses AVX- and AVX2-optimized cryptographic functions since version 1.0.2.1%5], This support is also present in various clones and forks, like LibreSSL
Prime95/MPrime, the software used for GIMPS, started using the AVX instructions since version 27.x.

david AV1 decoder can use AVX2 on supported CPUs.[36]

dnetc, the software used by distributed.net, has an AVX2 core available for its RC5 project and will soon release one for its OGR-28 project.
Einstein@Home uses AVX in some of their distributed applications that search for gravitational waves.*’]

Folding@home uses AVX on calculation cores implemented with GROMACS library.

Horizon: Zero Dawn Uses AVX1 in the Decima (game engine) and is the engine the game uses.

RPCS3, an open source PlayStation 3 emulator, uses AVX2 and AVX-512 instructions to emulate PS3 games.

Network Device Interface, an IP video/audio protocol developed by NewTek for live broadcast production, uses AVX and AVX2 for increased performance.
TensorFlow since version 1.6 and tensorflow above versions requires CPU supporting at least AVX.[3€]

Xenia requires AVX instruction set in order to run.

DR JEFF
25 soFTwaARE

INDIEAPPDEVELOPER
Aoy | nte | AVX Seesesmi
2020-23

NORTHRIDGE

Sl cal world technologies

Alder Lake and AVX-512 Linus Torvalds rants ...

By: Linus Torvalds (torvalds.delete@sthis.linux-foundation.org), July 11, 2020 1

| hope AVX512 dies a painful death, and that Intel starts fixing real problems instead of trying to create magic instructions to then create
benchmarks that they can look good on.

I've said this before, and I'll say it again: in the heyday of x86, when Intel was laughing all the way to the bank and killing all their competition
absolutely everybody else did better than Intel on FP loads. Intel's FP performance sucked (relatively speaking), and it matter not one iota.

And AVX512 has real downsides. I'd much rather see that transistor budget used on other things that are much more relevant. Even if it's still
FP math (in the GPU, rather than AVX512). Or just give me more cores (with good single-thread performance, but without the garbage like

AVX512) like AMD did.

No honestly, I'm not a huge fan of AVX2 either. But then. wasn't a huge fan of MMX or the original AVX. And no, before you ask, it's not like |
hold up the original i387 FPU as some shining example either ;)

MMX/SSE was a first-attempt (plus fixes). The i387 was a particularly nasty thing to be compatible with anyway, it's entirely understandable
why it was done the way it was done. In hindsight, maybe it could have been done better, but a "in hindsight" argument is always complete

BS. So that's not a valid argument. MMX/SSE was fine.

AVX/AVX2 were reasonable cleanups and honestly, | don't think 256 bits is a huge pain even as a baseline. And Intel has been good about
keeping AVX always there. Afaik, new CPU's really have gotten AVX reliably. So it hasn't been a fragmentation issue, and while | think it has
the same state dirtying issue ("helper function using MMX instructions and saves/restores the instructions it modifies will be clearing upper

bits in AVX registers and trashing state"), | think it was a fairly reasonable extension.

DR JEFF

CSUN 25| soFTwWARE
) INDIE APPDEVELOPER

. Intel AVX/AVX?2 L

NORTHRIDGE 2020_23

COMP222

12th Generation Intel® Core™ Processors
Intel® Advanced Vector Extensions 2 (Intel® AVX2)

Intel® Advanced Vector Extensions 2.0 (Intel® AVX2) is the latest expansion of the Intel instruction set. Intel®
AVX2 extends the Intel® Advanced Vector Extensions (Intel® AVX) with 256-bit integer instructions, floating-
point fused multiply-add (FMA) instructions, and gather operations. The 256-bit integer vectors benefit
math, codec, image, and digital signal processing software. FMA improves performance in face detection,
professional imaging, and high-performance computing. Gather operations increase vectorization
opportunities for many applications. In addition to the vector extensions, this generation of Intel processors
adds new bit manipulation instructions useful in compression, encryption, and general purpose software.
For more information on Intel® AVX, refer to http://www.intel.com/software/avx

Intel® Advanced Vector Extensions (Intel® AVX) are designed to achieve higher throughput to certain integer
and floating point operation. Due to varying processor power characteristics, utilizing AVX instructions may
cause a) parts to operate below the base frequency b) some parts with Intel® Turbo Boost Technology 2.0 to
not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software and
system configuration and you should consult your system manufacturer for more information.

Intel® Advanced Vector Extensions refers to Intel® AVX or Intel® AVX2 .

Note: Intel® AVX and AVX2 Technologies may not be available on all SKUs.

DR JEFF

CSUN . 25| soFTwWARE
. |ntel AVX AVX2 K e
° 2020-23

NORTHRIDGE

COMP222 12th Generation Intel® Core™ Processors

Datasheet

Intel®’AVX512-FP16

Architecture Specification

June 2021
Revision 1.0

CHAPTER 3. INSTRUCTION TABLE

IVB | Intel® Xeon® processors based on Ivy Bridge microarchitecture
KNL | Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series based on Knights Landing microarchitecture

SKX | Intel® Xeon® Processor Scalable Family based on Skylake microarchitecture
SPR | Future Intel® Xeon® processors based on Sapphire Rapids microarchitecture

Figure 3.1: Microarchitecture abbreviations used in instruction table

CSUN . 2 soFrware
intel AVX/AVX2 o men

2020-23

COMP222 12th Generation Intel® Core™ Processors
Datasheet
5 INSTRUCTIONS 21
5.1 VADDPH . .« o o e e e e e e e e e e e 22
5.2 VADDSH . .« o o o o e e e e e e 24
5.3 VOMPPH . .« o o o e e e e e e e e 26
5.4 VCMPSH . .« o ot e e e e e e 29
5.5 VCOMISH . o o v e e e e e e e e e e e e e e 32
5.6 VCVTDQ2PH . . o vt et e e e e e e e e 34
5.7 VCVTPD2PH . . o ot ot e e e e e e e e 36
5.8 VCVTPH2DQ . . . v e ot e e e e e e e e e 38
572VSCALEFPH o v oo e i ﬁ 195
573 VSCALEFSH . . o o v e e e e e e e e e e 198
B.74 VSQRTPH .« v v v o o e e e e e e e e e e e 200
5.75 VSQRTSH .« . v o o e e e e e e e e e e e e 202
B.76 VSUBPH . . . v o e e e e e e e e e e e e 203
B.77 VSUBSH . . o o o e e e e e e e e e 205

578 VUCOMISH e e e e e 207

CSUN . B4 soFrware
intel AVX/AVX2 o men

2020-23
COMP222 12th Generation Intel® Core™ Processors

5.1.3 Operation

Src2 = register

1| VADDPH (EVEX encoded versions) when src2 operand is a register
2 |VL = 128, 256 or 512

3 |KL := VL/16

s+ |IF (VL = 512) AND (EVEX.b = 1):

5 SET_RM(EVEX .RC)
¢ |ELSE
7 SET_RM(MXCSR.RC)

o |FOR j := 0 TO KL-1:

10 IF k1[j] OR *no writemaskx:

1 DEST.fp16[j] := SRC1.fp16[j] + SRC2.fp16[j]
12 ELSE IF *zeroing*:

13 DEST.fp16[j] := 0

14 // else dest.fpl6[j] remains unchanged

15

16 |DEST[MAXVL-1:VL] := 0

CSUN . B4 soFrware
intel AVX/AVX2 o men

2020-23
COMP222 12th Generation Intel® Core™ Processors

Datasheet

5.1. VADDPH CHAPTER 5. INSTRUCTIONS

Src2 = memory

1| VADDPH (EVEX encoded versions) when src2 operand is a memory source
2 |VL = 128, 256 or 512
3 |KL := VL/16

s |[FOR j := O TO KL-1:

6 IF k1[j] OR *no writemaskx:

7 IF EVEX.b = 1:

g DEST.fp16[j] := SRC1.fp16[j] + SRC2.fp16[0]
9 ELSE:

10 DEST.fp16[j] := SRC1.fp16[j] + SRC2.fp16[j]
1 ELSE IF *zeroingx:

12 DEST.fp16[j] := 0

13 // else dest.fpl6[j] remains unchanged

14

15 |DEST[MAXVL-1:VL] := 0

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

P DR JEFF
25| soFTwaRE
AV X O et Brabman
2020-23
(1] 92 -® (598 —
Quora ﬁ]_r [_/_I EQ’] d_\ Q Search Qut

& Yowan Rajcoomar, Computer Technician (2008-present) ®
Answered 18h ago

There is no current use cases which requires general purposes registers larger than
64-bits.

The current trend is the extension of vector and SIMD capabilities and the
addition of domain-specific accelerators which will help demanding applications
such as CAD, rendering, scientific workloads, machine/deep learning and Al. There,
a lot of data needs to be crunched at the same time so companies such as Intel
have introduced the following:

e AVX-512F which bumps the number of FP/SIMD registers from 16 to 32
while providing additional features (at the cost of die space and thermals)

e AVX-512 VNNI (Vector Neural Instructions) for handing 8 and 16-bit values
in convolutional neural networks. This was made available in Cascade and
Ice Lake-based chips.

e AVX-512 BF16 which provides a speedup when dealing with dot products
on bfloat16 pairs.

e x86 AMX or Advanced Matrix Extension. This is literally an accelerator built
into the x86 core with its own register file and instructions. This will debut
sometime later this year with Intel’'s next HEDT lineup.

ARM also went through similar changes with the addition of Scalable Vector
Extensions (SVE and SVE2) which is flexible in terms of width, ranging from 128 to
2048-bits. The RISC-V spec also provisions a 128-bit mode but no actual hardware
implements it because it would be a waste of resources, die space and would add

CSUN D) sorrware
pCuroma SIMD Benc h mar k L ot

2020-23
COMP222
o SIMD x-times faster than non-SIMD
12 - 11.8

mIVB 32 »IVB 64 Bay Trail

CSUN : 823 sorrware
Section

2020-23
COMP222

AMIK
Matt Mult

CSUN Bl sorrware
mCuroNs Mat Mu |t Exam p | e SRET

2020-23
COMP222 I

1.10 Going faster: Matrix multiply in Python [Present [Note

To demonstrate the impact of the ideas in this book, every chapter has a "Going Faster" section that improves the performance of a
program that multiplies a matrix times a vector. We start with this Python program:

for i in xrange(n):
for j in xrange(n):
for k in xrange(n):
C[il[j] += A[il[k] = B[kII[j]

We are using the n1-standard-96 server in Google Cloud Engine, which has two Intel Skylake Xeon chips, and each chip has 24 processors
or cores and running Python version 3.1. If the matrices are 960x960, it takes about 5 minutes to run using Python 2.7. Since floating point
computations go up with the cube of the matrix dimension, it would take almost 6 hours to run if the matrices were 4096x4096. While it's
quick to write the matrix multiply in Python, who wants to wait that long to get the answer?

In COD Chapter 2 (Instructions: Language of the Computer), we are converting the Python version of matrix multiply to a C version
increases performance by a factor of 200. The C programming abstraction is much closer to the hardware than Python, which is why we
use it as the programming example in this book. Closing the abstraction gap also makes it much faster than Python [Leiserson, 2020].

¢ Inthe category of data level parallelism, in COD Chapter 3 (Arithmetic for Computers) we use subword parallelism via C intrinsics to
increase performance by a factor of about 8.

¢ In the category of instruction level parallelism, in COD Chapter 4 (The Processor) we use loop unrolling to exploit multiple instruction
issue and out-of-order execution hardware to increase performance by another factor of about 2.

¢ In the category of memory hierarchy optimization, in COD Chapter 5 (Large and Fast: Exploiting Memory Hierarchy) we use cache
blocking to increase performance on large matrices by another factor of about 1.5.

¢ Inthe category of thread level parallelism, in COD Chapter 6 (Parallel Processor from Client to Cloud) we use parallel for loops in
OpenMP to exploit multicore hardware to increase performance by another factor of 12 to 17.

DR JEFF

CSUN I I 25| soFTwaRrE
CALIFORNIA INDIEAPPDEVELOPER
Mat Mult Example

NORTHRIDGE

COMP222 I

Figure 1.10.1: Optimizations of matrix multiply
program in Python in the chapters of this book.

(COD Figure 1.20).

100000
44,226

/

10000 3686
2,457 ’
1,365

1000

175

100 /
10
1/

Python translate + Data Level + Instruction + Memory + Thread
(Ch. 1) toC Parallelism level hierarchy level
(Ch. 2) (Ch. 3) parallelism optimization parallelism
(Ch. 4) (Ch. 5) (Ch. 6)

Speed-up

AAAAAAAAAAA
STATE UNIVERSIT

COMP22

DR JEFF

252 soFTwARE

: Apple M1 MatMult

It's amazing to me that there are four separate pieces of
hardware in M1 devices that can do matrix multiplies. In
addition to running on the CPU, M1 Max devices have three
separate kinds of hardware-accelerated gemm : the GPU,
the ANE (Apple Neural Engine), and this special matrix
Coprocessor.

Since there is no summary, these are the benchmark findings:

AMX co-processor 2 TFLOPS FP32
GPU 8 TFLOPS FP32
Neural Engine 5.5 TFLOPS FP16

CSUN Bl sorrware
A pp le M1 MatMult O eff Brobmman

2020-23
CO M 222 e . i
I z;-t: Timothy Liu's Blog

Benchmarking the Apple M1 Max

Understanding the Hardware Capabilities of
Apple's flagship SOC

CPU {:Ef Timothy Liu - Nov 14, 2021 13 min read

The CPU in the M1 Max is a 10-core CPU, with 2 efficiency cores at 2.1 GHz and 8

performance cores at 3.0 GHz during all-core load. There should be no difference

between the CPU performance on the M1 Max and M1 Pro, barring slightly higher
memory bandwidth available to the CPU complex on the M1 Max. As a reference point
for comparison purposes, | have my desktop AMD Ryzen 5600X CPU with DDR4

memory and not overclocked. The desktop is running Ubuntu 20.04.

>
’:’8 P (3.0 GHZ) vs AMD Ryzen 5600X

<2 E (2.1 GHz)

- JEFF
CSUN - S(E))I?TYI;:(ZRE
. Ap P le M1 MatMult & e orobra
NORTHRIDGE 2020—23

COMP222

Matrix Multiplication (GEMM) Performance

We already know that the M1 Max CPU should have really strong matrix multiplication

performance due to Apple's "hidden"/undocumented AMX co-processor embedded

in the CPU complex, and that it is leveraged when you use Apple's Accelerate

framework. What | didn't know is that you can compile NumPy to work with
Accelerate, which allows you to easily leverage the AMX instructions via normal
NumPy code (NumPy installed via conda does not include Accelerate support, and
instead uses cblas). The results are quite stunning, especially for single precision, or
FP32 (which is commonly used in machine learning applications), giving us about
almost 2 TFLOPS for large enough matrix sizes (about the level of a GTX 1050 Ti).
Mind you, this is via normal Python NumPy code. Presumably, if you use Accelerate
directly via a lower-level language, you can get even better performance. Compared
to the 5600X, the M1 Max CPU is generally at least 2x faster any data type and any
matrix size, even with MKL enabled on the 5600X.

= DR JEFF
CSUN &5 soFTWARE
mhromN A pp | e M1 MatMu |t E g
NORTHRIDGE 2020_23
COMP222
(Execution timings for function reported, lower is better)

B M1 Max (Accelerate) M1 Max (Conda) [5600X [5600X+MKL

I JM'IJ“JL.._

rand num gen special stats svd cholesky

eigendecomp vecmul

M1 Max, with Accelerate, is faster on 3 tasks (RNG, special, Cholesky)

Both are about the same on 1 task (stats)

5600X, with MKL is faster on 3 tasks (SVD, VecMul, eigendecomp)

DR JEFF

CSUN 25 soFTwaARE
. A p p | e AMX M at M u |t e
NORTHRIDGE 2020’23

COMP222 1, @bwasti (mastodon)

How to Get 1.5 TFlops of FP32 Performance on a Single M1 CPU
Core

by @bwasti (mastodon)

If you're in the market for training large modern neural networks, this post won't really be relevant, since that's 100x
slower than an A100 (156TFlops).

So, how on earth is 1.5 TFlops interesting?

e this is running on a single core of a battery powered 2020 MacBook Air
¢ this is running with a ~0.5 nanosecond latency per instruction

We are not in the realm of beefy accelerators or GPU tensor cores. We are talking about real-world linear algebra
performance that lives one cycle away from CPU registers.

,_ \ DR JEFF
CSIJN ﬁ SOFTWARE
ChTomy A pp | e AMX MatMu |t L ot
NORTHRIDGE 2020_23
COMP222 by @bwasti (mastodon)
What is an AMX Co-Processor?

It's basically SIMD on steroids. An important distinction is that the AMX:CPU ratio is not 1:1; not every core has its own
AMX co-processor.

Here are the sizes one might use to load or store values:

Float

4 bytes U
Maximum ARM SIMD load size

4 floats 16 bytes \ H H H \

Minimum AMX load size

16fioats 64 bytes NI

Maximum AMX load size

32floats 128 bytes [N ——

The minimum is as wide as a full AVX512 register.

CSUN) sorrwars
. A p p | e A |V| X |\/| at |V| u |t iy

2020-23
COMP222 1, @bwasti (mastodon)

The registers are segmented into groups: X, Y and Z. For every instruction, the X and Y groups hold inputs and the Z
group holds outputs.

64 bytes

\
(

B
J

X

128 floats 512 bytes

Y

128 floats 512 bytes

DR JEFF

Dr Jeff SOFT“M‘ ‘l ZE
CALIFORNIA INDIE APPDEVELOPER
UNIVER © Jeff Drob
A PP le AMX MatMult o brobmar

2020-23
COMP222 by @bwasti (mastodon)

a

Z

4096 bytes
1024 floats

{IHATHRHRIN
AR
AR
IR

(Spoiler: a full 1024 bytes (1/4 of the Z registers) can be populated with a single AMX instruction.)

CSUN 83 soFrware
eSO A pp le AMX MatMult O i robmman

2020-23
COMP222 by @bwasti (mastodon)

What is an outer product? Assuming you have two input vectors u and v:

ul _v1_
17%) V2
u= , V=
| Um | Vn |

The outer product is the matrix containing a product of every possible pairwise combination of their elements. (This gives
some hints as to why the Z register group is so much bigger than X and Y.)

[uivy ... upvy,

urvi . Urvy
u®v=

| UmVi e UmVn i

a DR JEFF
CSUN ﬂ SOFTWARE
pmChuroma A pp | e AMX MatMu |t e
NORTHRIDGE 2020-23
COMP222 by @bwasti (mastodon)

On the AMX chip, this boils down to a very simple instruction that looks a lot like this:

]
[
[
]
[
]
[
® _ = _ And there's a flag you can set to also make it accumulate from the previous result:

[

., —

16 floats 16 floats L B I

BN —

B s I

I .]

I 1

256 floats 7 ® MRS = .

s 1

s 1

I 16 floats 16 floats]

I]

I [

I (I

256 floats 256 floats

CSUN B8 sorrware
eSO A pp le AMX MatMult O i robmman

2020-23

COMP222 ", @pwasti (mastodor) oo % Using AMX in C

And here is how we might do it in AMX:

uint64_t reset_z = 1ull << 27;

for (uint32_t k = 0; k < K; ++k) {
uint64_t idx = k % 4;

AMX_LDX((uint64_t)A + k * 64);

AMX_LDY((uint64_t)B + k * 64);

AMX_FMA32(reset_z);

reset_z = 0;

CSUN : 823 sorrware
Section

2020-23
COMP222

VILIW
IMIC

CSUN B sorrware
mSuromIn V |_| an d V |_| W b o

comMp222 Quora o

What are the pros and cons of variable length instructions?

¥ Answered just now

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-present)

| would say that VLI and VLWI (very long word instructions) have died the same death
that CISC did when the smart decision was made to switch to a simpler, scalable RISC
architecture that is deeply pipelined. Variations of any kind can leave holes in the
instruction pipeline due to multi-cycle instruction fetching.

0 Greg Harp, former Retired, 45 Years With Mainframe IT and Z Systems ®

Answered 2h ago

From the mainframe perspective, there are 2, 4 and 6 byte instructions. | have seen
people do 6 instructions of 2 bytes each (they just have to use the smallest
instruction) when a single 6 bytes would do the same. Bottom line, is use the
instruction that best meets the need and do not get all hung up about the length of
the instruction. But think ahead as you may want to use an extra instruction in one
place to set you up for a future use of a register someplace else.

- | DR JEFF
CSUN 25| soFTwWARE
INDIE APPDEVELOPER
A VLIW O et robman
NORTHRIDGE 2020-23

coMpP222 Quora

What is the advantage of VLIW architecture?

@ Jeff Drobman
Lecturer at California State University, Northridge (2016—present) - Just now

simple: parallel computation via multiple operations per instruction. but we now have
been using a simpler architecture with SMT and superscalar that provide multi-issue
instructions. so no need to load them up into a single long instruction.

Is VLIW better than X86?

@ Jeff Drobman
Lecturer at California State University, Northridge (2016—-present) - Just now

No. VLIW creates parallel operations in a single instruction. but now in modern CPU's,
we have better techniques for parallelism: multi-threading, multi-core, multi-issue.

CSUN : 2 soFrware
IMC: In Mem Compute o i

2020-23
COMP222

Survey paper on SRAM-based In-Memory Computing Techniques

& sparsh - ® Wednesday at 1:24 AM

Wednesday at 1:24 AM < #1

As von Neumann computing architectures become increasingly constrained by data-movement
overheads, researchers have started exploring in-memory computing (IMC) techniques to offset
data-movement overheads.
sparsh

We present a survey of 90+ papers on in-memory computing using SRAM memory. We review the

MEMBER use of SRAM-IMC for implementing Boolean, search and arithmetic operations, and accelerators
for machine learning (especially neural networks), image processing and automata computing.
Paper is here, accepted in Elsevier Journal of Systems Architecture 2021.

CSUN : 823 sorrware
. ARM IMC Extension G i i

NORTHRIDGE

COMP222
The atomic instructions offer a rather rich set of functions including: add, sub,* and, or, xor, min,

max, swap, and compare-and-swap. In-Memory Computation

These are executed by the cache/memory controller and not the CPU. A non-CPU device can even
issue these request types.

L2 Cache
ache L3 € ache
|
Incre;nent
Increment
Increment SN, D /
ALU Interconnect
,
Memory

(Source.) @

Now, within the controller, there's a 64-bit ALU, and most likely some internal registers to hold
arguments and intermediate results. Registers are everywhere.

But, these aren't CPU registers—architectural or microarchitectural—and they're not user visible.
They're microarchitectural registers within the memory system implementation.

CSUN . B sorrware
ChTomy ARM IMC Extension L ot

2020-23
COMP222

Enter the ARM v8.1 Large System Extensions. Specifically, their new atomic instructions. These
make use of special bus support in the AXi 5 and CHI bus protocols. @

With these extensions, you can issue special atomic transactions that execute within the memory
system. Depending on where the cache line resides, it could execute in L1D, or way out in the L3
cache, last-level cache, or memory controller.

The atomic instructions offer a rather rich set of functions including: add, sub,* and, or, xor, min,
max, swap, and compare-and-swap.

These are executed by the cache/memory controller and not the CPU. A non-CPU device can even
issue these request types.

RISC = Load-Store

@ Jeff Drobman - Just now

- hey Joe, good stuff, but ... “RISC" is always a “Load-Store" architecture by definition. if there are any other
instructions which access memory then those are not “RISC". you introduce here an architectural extension
generally called "in-memory computation” — a whole other thing.

CSUN . B sorrware
ChTomy Loo P Unro | | INg L ot

compr222 Quora

2020-23

Lawrence Stewart - Follow coe
Research Computer Scientist - 4h

Loop unrolling is a bit oversold. Out of order processors with any sort of decent branch
prediction can run not-unrolled loops at full speed and keep multiple iterations in flight.

Instead, unrolling a largish loop blows up the size of the code in the loop, which may cause
performance to be limited by the instruction cache and decode parts of the processor.
Small loops will fit inside the "“loop buffer” or whatever it is called, but large loops won't.

Loop unrolling is useful for in-order processors that don't do register renaming, it is not
clear whether any speedup is achieved for a newish CPU.

Instead, it makes more sense for the compiler to vectorize the loop, using SSE, AVX, and
AVX512 if the CPU has those things.

¥ DR JEFF
CSUN . 25| soFTwWARE
S Loop Unrollin & iffErsiman
NORTHRIDGE 2020-23
comp222 Quora
e Lawrence Stewart - Follow
" Research Computer Scientist -
And if your problem is loops without data dependencies between iterations, may | suggest

using the GPU? CUDA or SYCL are pretty easy. Or if you have a multicore, then take a look
at OpenMP for parallelizing your loops.

As usual, any screed about performance will be incomplete without a suggestion to use
performance tools to find out where are the bottlenecks before you start making
assumptions about loops.

Loops with any memory references in them can easily miss for large loops and be memory
bandwidth limited rather than CPU limited.

@ Jeff Drobman - Just now

: very good analysis. seems to me that branch prediction is the most significant
factor, so for large loops, prediction efficiency is very high (>99%). next comes L1
cache performance. D-cache should not change, as the data remains the same. but
there will be much higher cache miss rate in the I-cache, since loops will re-use
code (high locality).

gre DR JEFF
CSUN . B soFrware
AAAAAAAAAA INDIE APPDEVELOPER
TTTTTTTTTTTTTT © Jeff Drob
nnnnnnnnnnn S e Ct I O I I 63‘1525?23man

COMP222

Mlcro Architecture

| Operand forwarding
Branch prediction
Speculation/OOE
Intel & AMD

ﬂﬂﬂﬂ

» See separate slide set

CSUN : 24 soFrware
Section

2020-23
COMP222

GPU
Graplhics

(See separate slide set “GPU”)

CSUN : B8 sorrware
sATE OISy Section © Jeff Drobman

COMP222 02023

DSP

CSUN : : B4 soFrware
e 64-Bit Integer Multiply i

COMP222 _ Quora

How do you write an ALP (assembly language) to multiply the
word 3421H by the double word 57412236H and store the
result in locations starting in 89000H?

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-
&7 present)

Answered just now

in words not code: 1. load the operands into registers. 2. choose the best multiply
instruction (MIPS and ARM have several versions), and use it for the low word. 3. store
the product in a pair of 32-bit registers. 4. multiply the high word and store it into a pair
of 32-bit registers. 5. finally, sum the 2 partial products after 1st shifting the more
significant one left 32 bits (which may be done without actually shifting).

,_) DR JEFF
CSIIN . . ﬁ SOFTWARE
. DSP: 64-Bit Multi o |y & e orobman
NORTHRIDGE L] 2020-23
COMP222 -Quora
Joe Zbiciak, | have been programming since grade school

Ancwiar ard 1m ann

1 MVK.S1 ©0x3421, A®
2 || MVK.S2 0x2236, BO
3 MVK.S2 0x5741, BO
4 || MPYU.M1X A@, Bo, A2
5 || MVK.S1 0x89, Al
6 MPYU.M2X A@, BO, BO
7 || SHL.S1 A1, 12, Al
8 SHRU.S1 A2, 16, AQ
9 || STH.D1T1 A®, *Al++

10 ADD.L1X BO, A@, A®
1 SHRU.S1 A@, 16, A0
12 || STH.D1T1 A@, %Al

13 STH.D1T1 A@, *++Al

DSP (VLIW) ISA

Multi-issue

- DR JEFF
CSUN : tiol E)sorrware
DSP: 64-Bit Multi Py © e Drobmn
cOMP222 _Quora DSP (VLIW) —
9 Joe Zbiciak, | have been programming since grade school

f’n)'sC‘\fw.’D\"Df‘l ,] m ann

This is actually assembly code for an exposed pipeline VLIW DSP. It has registers A@ through
A15 and B0 through B15, and can issue up to 8 instructions in parallel every cycle.

It has two clusters of functional units (A side and B side), and a cross-path that allows each
side to read one register from the other side. Also, the load/store units can associate
addresses on either side with data from either side.

The 8 units are:

e L1, L2: Logical/Long. 32-bit add/sub, 40-bit add/sub, booleans, compares (aka.
“logicals").

e S1, S2: Shift. 32-bit add/sub, 32- & 40-bit shifts, booleans, 16-bir constant
generation, branches. Branches have 6 exposed delay slots.

e D1, D2: Data. 32-bit add/sub, 32-bit address arith, load/store. Loads have 4 exposed
delay slots.

e M1, M2: Multiply. 16x16 - 32 multiplies with 1 exposed delay slot

- DR JEFF
CSUN : tiol E)sorrware
DSP: 64-Bit Multi Py © e Drobmn
cOMP222 _Quora DSP (VLIW) —
9 Joe Zbiciak, | have been programming since grade school

f’n)'sC‘\fw.’D\"Df‘l ,] m ann

The 1/2 in the name specifies A side vs. B side. An X indicates using the cross-path. For
LD/ST, the T1/T2 suffix indicates which side the data is on, while D1/D2 indicates which side
the address is on.

And, the parallel bars | | specify that the instruction issues in parallel with the previous
instruction. Example:

MPY.M1X Al, B2, A3 ; A3 = Al x B2
|| ADD.L1 A2, Al, A®

This issues an MPY to the M1 unit in parallel with an ADD on the L1 unit. The multiply reads a
single operand from the B side.

You could swap two registers in one cycle w/out a temporary like this:

MV.L2 B1, B2
|| MV.S2 B2, Bl

That takes advantage of the fact they issue in parallel.
The first ~20 years of my career involved members of that DSP family. (&)

It's a beast to program, but | was able to wring quite a lot out of it.

- DR JEFF
CSUN : tiol E)sorrwanc
DSP: 64-Bit Multi Py © e Drobmn
COMP222 _Quora DSP (VLIW) —
9 Joe Zbiciak, | have been programming since grade school

f'n T‘S’C‘\A/Q\"DK‘I Tm amnn

Yes, indeed it was. | was at Tl for just shy of 20 years. I'm only avoiding naming it for OP's
sake.

Before | left at the end of 2015, we were working on a 13-issue, 64-bit VLIW DSP with 512-
bit vectors. It did finally end up in products just before COVID-19 hit, with press just as
COVID was taking off:

s 13-issue

www-eetimes-com/isscc-2020-chipl... & 64-bit VLIW

training-ti-com/sites/default/fi...

| was the lead architect for the multidimensional vector streaming engine.

(The diagram shows 12 units; however, there were a variety of “unitless” instructions that
effectively formed a 13th unit.)

| told my former team |I'd come back to buy everyone a round of drinks once it released, but
COVID-19 put the kibosh on that. : —(

S’IDJ (@Grsl DR JEFF
- DSP Chip (TI) &
cCoOMP222 Quora e
Heterogeneous processing cores

C71x DSP (up to 1 GHz):

* Next-generation, Tl-true 64b DSP core:
512b SIMD processing
Dual-data path CPU

+ 64-bit scalar + 512-bit vector ! ! !
- Vision processing enhancements CT1s O CorePas 1C718%)
- OpenVX support for computer vision processing | geue |

A
CTis OO O™

* Matrix Multiply Accelerator (MMA) for deep leaming —r——y

—
Pt i e et B i
-

* Memory system: (T
~ 32kB L1 program cache [y

48kB L1 data cache or RAM ;..“.:i::‘ ’ i.::"
512kB L2 unified cache or RAM o o
Access to L3 with 10 and CPU cache coherency
CorePac Memory Management Unit (CMMU)

* ARM®vB-A compliant
* Multi-dimensional Streaming Engine (SE) provides high- —

speed synchronous access to L3 memory

s
AR ALIL
L]

[uo.wa-”m]
i

@ Joe Zbiciak, | have been programming since grade school []

Ancuiarad 1m ann

| was the lead architect for the muItidimensiona\Ivector streaming engine.

(The diagram shows 12 units; however, there were a variety of “unitless” instructions that effectively
formed a 13th unit.)

