
COMP222

© Jeff Drobman
2020-22COMP 222

Computer Organization
(Architecture)

Stack Machines

email jeffrey.drobman@csun.edu

website

Dr Jeff Drobman
drjeffsoftware.com/classroom.html

Rev 3-14-22

COMP222

© Jeff Drobman
2020-22Stack Machines

COMP222

© Jeff Drobman
2020-22PIC18F Dual Memory

PIC 18F MICROCONTROLLER

SP, STATUS, W REGISTERS

CODE
ROM*

DATA
RAM

DATA
ROM*

STACK

FILE
REG

*READ ONLY
**use DB, DW

DATA
AREA**

DATA AREA
COPY

SFR

PIC18F

COMP222

© Jeff Drobman
2020-22Stack Machines

v APL, Forth languages
v HP, TI calculators

COMP222

© Jeff Drobman
2020-22Stack Machines

Ø Hardware or Software stacks

COMP222

© Jeff Drobman
2020-22Stack Machines

In computer science, computer engineering and programming
language implementations, a stack machine is a computer
processor or a virtual machinein which the primary interaction is
moving short-lived temporary values to and from a push
down stack. In the case of a hardware processor, a hardware
stack is used. The use of a stack significantly reduces the
required number of processor registers. Stack machines
extend push-down automaton with additional load/store
operations or multiple stacks and hence are Turing-complete.

v Turing Complete

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_engineering
https://en.wikipedia.org/wiki/Programming_language_implementation
https://en.wikipedia.org/wiki/Computer_processor
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Hardware_stack
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Push-down_automaton
https://en.wikipedia.org/wiki/Turing_completeness

COMP222

© Jeff Drobman
2020-22Stack Machines

Most or all stack machine instructions assume that operands
will be from the stack, and results placed in the stack. The
stack easily holds more than two inputs or more than one
result, so a rich set of operations can be computed. In stack
machine code (sometimes called p-code), instructions will
frequently have only an opcode commanding an operation,
with no additional fields identifying a constant, register or
memory cell, known as a zero address format.[1] This greatly
simplifies instruction decoding. Branches, load immediates,
and load/store instructions require an argument field, but stack
machines often arrange that the frequent cases of these still fit
together with the opcode into a compact group of bits. The
selection of operands from prior results is done implicitly by
ordering the instructions. Some stack machine instruction sets
are intended for interpretive execution of a virtual machine,
rather than driving hardware directly.

Ø Zero address format

https://en.wikipedia.org/wiki/P-code
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Stack_machine

COMP222

© Jeff Drobman
2020-22Stack Machines

Commercial stack machines[edit]
See also: High-level language computer architecture
Examples of stack instruction sets directly executed in hardware include
•The F18A architecture of the 144-processor GA144 chip from GreenArrays, Inc.[7][8][9]
•the Z4 computer by Konrad Zuse.[10]
•the Burroughs large systems architecture (since 1961)
•the Xerox Dandelion introduced April 27, 1981, utilized a stack machine architecture to
save memory.[11][12]
•the English Electric KDF9 machine. First delivered in 1964, the KDF9 had a 19-deep
pushdown stack of arithmetic registers, and a 17-deep stack for subroutine return
addresses
•the UCSD Pascal p-machine (as the Pascal MicroEngine and many others) supported
a complete student programming environment on early 8-bit microprocessors with poor
instruction sets and little RAM, by compiling to a virtual stack machine.
•HP 3000 (Classic, not PA-RISC)
•Tandem Computers T/16. Like HP 3000, except that compilers, not microcode,
controlled when the register stack spilled to the memory stack or was refilled from the
memory stack.
•the Atmel MARC4 microcontroller[14]
•Several "Forth chips"[15] such as the RTX2000, the RTX2010, the F21[16] and
the PSC1000[17][18]

https://en.wikipedia.org/w/index.php?title=Stack_machine&action=edit§ion=4
https://en.wikipedia.org/wiki/High-level_language_computer_architecture
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Z4_(computer)
https://en.wikipedia.org/wiki/Konrad_Zuse
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Burroughs_large_systems
https://en.wikipedia.org/wiki/Xerox_Daybreak
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/English_Electric_KDF9
https://en.wikipedia.org/wiki/UCSD_Pascal
https://en.wikipedia.org/wiki/Pascal_MicroEngine
https://en.wikipedia.org/wiki/HP_3000
https://en.wikipedia.org/wiki/Tandem_Computers
https://en.wikipedia.org/wiki/Atmel
https://en.wikipedia.org/w/index.php?title=MARC4&action=edit&redlink=1
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/RTX2010
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Ignite_(microprocessor)
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Stack_machine

COMP222

© Jeff Drobman
2020-22Stack Machines

Virtual stack machines[edit]
Examples of virtual stack machines interpreted in software:
•the Whetstone ALGOL 60 interpretive code,[22] on which some
features of the Burroughs B6500 were based
•the Burroughs B5000
•the UCSD Pascal p-machine; which closely resembled Burroughs
•the Niklaus Wirth p-code machine
•Smalltalk
•the Java virtual machine instruction set
•the WebAssembly bytecode
•the Virtual Execution System (VES) for the Common Intermediate
Language (CIL) instruction set of the .NET Framework (ECMA 335)
•the Forth programming language, especially the integral virtual
machine
•Adobe's PostScript

https://en.wikipedia.org/w/index.php?title=Stack_machine&action=edit§ion=5
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Whetstone_(benchmark)
https://en.wikipedia.org/wiki/ALGOL_60
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Burroughs_Large_Systems
https://en.wikipedia.org/wiki/UCSD_Pascal
https://en.wikipedia.org/wiki/P-code_machine
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/WebAssembly
https://en.wikipedia.org/wiki/Virtual_Execution_System
https://en.wikipedia.org/wiki/Common_Intermediate_Language
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Forth_(programming_language)
https://en.wikipedia.org/wiki/PostScript

COMP222

© Jeff Drobman
2020-22Stack Machines

Hybrid machines[edit]
(These should not be confused with hybrid computers that combine
both digital and analogue features, e.g. an otherwise digital
computer that accesses analogue multiplication or differential
equation solving by memory mapping and conversion to and from
an analogue device's inputs and outputs.)

Pure stack machines are quite inefficient for procedures which
access multiple fields from the same object. The stack machine
code must reload the object pointer for each pointer+offset
calculation. A common fix for this is to add some register-machine
features to the stack machine: a visible register file dedicated to
holding addresses, and register-style instructions for doing loads
and simple address calculations. It is uncommon to have the
registers be fully general purpose, because then there is no strong
reason to have an expression stack and postfix instructions.

https://en.wikipedia.org/w/index.php?title=Stack_machine&action=edit§ion=6
https://en.wikipedia.org/wiki/Hybrid_computer

COMP222

© Jeff Drobman
2020-22Stack Machines

Another common hybrid is to start with a register machine
architecture, and add another memory address mode
which emulates the push or pop operations of stack
machines: 'memaddress = reg; reg += instr.displ'. This
was first used in DEC's PDP-11 minicomputer. This
feature was carried forward in VAX computers and
in Motorola 6800 and M68000 microprocessors. This
allowed the use of simpler stack methods in early
compilers. It also efficiently supported virtual machines
using stack interpreters or threaded code. However, this
feature did not help the register machine's own code to
become as compact as pure stack machine code. Also,
the execution speed was less than when compiling well to
the register architecture. It is faster to change the top-of-
stack pointer only occasionally (once per call or return)
rather than constantly stepping it up and down throughout
each program statement, and it is even faster to avoid
memory references entirely.

https://en.wikipedia.org/wiki/Digital_Equipment_Corporation
https://en.wikipedia.org/wiki/PDP-11
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/Motorola_6800
https://en.wikipedia.org/wiki/Motorola_68000
https://en.wikipedia.org/wiki/Threaded_code

COMP222

© Jeff Drobman
2020-22Stack Machines

Stack machines have higher code density. In contrast to common
stack machine instructions which can easily fit in 6 bits or less,
register machines require two or three register-number fields per
ALU instruction to select operands; the densest register machines
average about 16 bits per instruction plus the operands. Register
machines also use a wider offset field for load-store opcodes. A
stack machine's compact code naturally fits more instructions in
cache, and therefore could achieve better cache efficiency,
reducing memory costs or permitting faster memory systems for a
given cost. In addition, most stack-machine instruction is very
simple, made from only one opcode field or one operand field.
Thus, stack-machines require very little electronic resources to
decode each instruction.
A program has to execute more instructions when compiled to a
stack machine than when compiled to a register machine or
memory-to-memory machine

https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/CPU_cache

COMP222

© Jeff Drobman
2020-22Stack Machines

More recently, so-called second-
generation stack machines have adopted
a dedicated collection of registers to serve
as address registers, off-loading the task of
memory addressing from the data stack.

For example, MuP21 relies on a register
called "A", while the more recent
GreenArrays processors relies on two
registers: A and B.

COMP222

© Jeff Drobman
2020-22Stack Machines

The Intel x86 family of microprocessors have a
register-style (accumulator) instruction set for
most operations, but use stack instructions
for its x87, Intel 8087 floating point arithmetic,
dating back to the iAPX87 (8087) coprocessor
for the 8086 and 8088. That is, there are no
programmer-accessible floating point
registers, but only an 80-bit wide, 8 deep
stack. The x87 relies heavily on the x86 CPU
for assistance in performing its operations.

x87

https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/Intel_8087

COMP222

© Jeff Drobman
2020-22Stack Machines

Interrupts
Responding to an interrupt involves saving the
registers to a stack, and then branching to the
interrupt handler code. Often stack machines
respond more quickly to interrupts, because most
parameters are already on a stack and there is no
need to push them there. Some register machines
deal with this by having multiple register files that
can be instantly swapped but this increases costs
and slows down the register file.

COMP222

© Jeff Drobman
2020-22Stack Machines

Out-of-order execution[edit]
This view permits the out-of-order execution of the Tomasulo
algorithm to be used with stack machines.
Out-of-order execution in stack machines seems to reduce or
avoid many theoretical and practical difficulties.[31] The cited
research shows that such a stack machine can exploit
instruction-level parallelism, and the resulting hardware must
cache data for the instructions. Such machines effectively bypass
most memory accesses to the stack. The result achieves
throughput (instructions per clock) comparable to RISC register
machines, with much higher code densities (because operand
addresses are implicit).
One issue brought up in the research was that it takes about 1.88
stack-machine instructions to do the work of a register machine's
RISC instruction. Competitive out-of-order stack machines
therefore require about twice as many electronic resources to
track instructions ("issue stations"). This might be compensated
by savings in instruction cache and memory and instruction
decoding circuits.

https://en.wikipedia.org/w/index.php?title=Stack_machine&action=edit§ion=13
https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Stack_machine
https://en.wikipedia.org/wiki/Clock_rate
https://en.wikipedia.org/wiki/RISC

