— DR JEFF

CALIFORNIA IﬁlSOFTWARE
STATE UNIVERSITY INDIE APPDEVELOPER
NORTHRIDGE © Jeff Drobman

2021-23
Spring 2023 Rev 2-21-23

Computer Organization

CSUN

COMP222

Micro-Architecture
x86, Apple

Dr Jeff Drobman

website m» drjeffsoftware.com/classroom.html|

email = jeffrey.drobman@csun.edu

AAAAAAAAAA
TTTTTTTTTTTTTTT
RRRRRRRRRR

COMP222

@M DR JEFF
Q SOFTWARE

INDIEAPPDEVELOPE
In d ex osrronmores

2021-23

**RISC vs CISC -2 slide 3
**Pipelining Details = slide 13
**Micro arch

J Overview -2 slide 25

J Operand Forwarding =2 slide 31

J Branch Prediction = slide 39
J Speculation/Re-order = slide 43

**Brand Micro arch = slide 45
x86 = slide 46

Intel = slide 51

AMD -2 slide 60

Apple = slide 93

Fujitsu = slide 101

DOoO00D

CSUN : 8 sorrware
sTATE U Section © Jeff Drobman

2021-23
COMP222

RISC vs CISC

CSUN 83 soFrware
r AT RISC vs CISC O et Braman

2021-23
COMP222

(=7 W R { =M

The problem with using RISC versus CISC as a lens for comparing modern x86 versus
ARM CPUs is that it takes three specific attributes that matter to the x86 versus ARM
comparison — process node, microarchitecture, and ISA — crushes them down to one,
and then declares ARM superior on the basis of ISA alone. “ISA-centric” versus
“implementation-centric” is a better way of understanding the topic, provided one
remembers that there’s a Venn diagram of agreed-upon important factors between the
two. Specifically:

The ISA-centric argument that manufacturing geometry and
microarchitecture are important and were historically responsible for x86’s dominance of
the PC, server, and HPC market. This view holds that when the advantages of
manufacturing prowess and install base are controlled for or nullified, RISC — and by
extension, ARM CPUs — will typically prove superior to x86 CPUs.

The implementation-centric argument acknowledges that ISA can and does matter, but
that historically, microarchitecture and process geometry have mattered more. Intel is still
recovering from some of the worst delays in the company’s history. AMD is still working to
improve Ryzen, especially in mobile. Historically, both x86 manufacturers have
demonstrated an ability to compete effectively against RISC CPU manufacturers.

CSUN 2 soFrware
RISC vs CISC S
COMP222 _yyj0ra

Why are RISC processors considered faster than CISC processors?

a Bob Colwell, former Ex-Intel Chief X86 Architect, Ex-DARPA/MTO Directo

ArmmiarAava A CAantAarmbAar N TN10 I lmuiAadad b/ CA DAl 200 viAaAava AvinAar iAnAA AR AYr +irmaA

Intel's x86's do NOT have a RISC engine “under the hood." They implement the x86
instruction set architecture via a decode/execution scheme relying on mapping the x86
instructions into machine operations, or sequences of machine operations for complex
instructions, and those operations then find their way through the microarchitecture,
obeying various rules about data dependencies and ultimately time-sequencing. The
"micro-ops” that perform this feat are over 100 bits wide, carry all sorts of odd
information, cannot be directly generated by a compiler, are not necessarily single
cycle. But most of all, they are a microarchitecture artifice — RISC/CISC is about the
instruction set architecture.

Microarchitectures are about pipelines, branch prediction, Id/st prediction, register
renaming, speculation, misprediction recovery, and so on. All of these things are
orthogonal to what instructions you put into your ISA.

¥ DR JEFF
CSUN 25| soFTwWARE
oS RISC vs CISC b i
NORTHRIDGE 2021_23
COMP222 QllOI'a MICIolOpe
Why are RISC processors considered faster than CISC processors?

a Bob Colwell, former Ex-Intel Chief X86 Architect, Ex-DARPA/MTO Directo

ArmmiarAava A CAantAarmbAar N TN10 I lmuiAadad b/ CA DAl 200 viAaAava AvinAar iAnAA AR AYr +irmaA

There can be real consequences to mentally blurring the lines between architecture and
microarchitecture. | think that's how some of the not-so-good ideas from the early RISC
work came into existence: register windows and branch shadows, for example.
Microarchitecture is about performance of this chip that I'm designing right now.
Architecture (adding new instructions, for example) is about what new baggage I'm
going to inflict on designers of compatible future chips and those writing compilers for
them.

The micro-op idea was not “RISC-inspired”, "RISC-like", or related to RISC at all. It was
our design team finding a way to break the complexity of a very elaborate instruction
set away from the microarchitecture opportunities and constraints present in a
competitive microprocessor.

CSUN 2 soFrware
RISC Goals S

comp222 Quora

@ Jeff Drobman - 20h ago
¥ Joe, | teach that RISC has these specific design principles: Load-Store, large GR
set, which support single-cycle execution.

<§ Reply ooo

@ Joe Zbiciak A - 13h ago

Single cycle throughput and large orthogonal general purpose register file are
ideals RISC CPUs aspired to. Single cycle latency for arithmetic was also a
goal, but some operations simply take more than one cycle.

Every commercial RISC seems to tarnish the ideal in some way. MIPS with their
bolt-on multiplier. ARM with load/store multiple and shifter on src2. SPARC
register windows.

Jerry Coffin and | have gone back and forth on RISC in theory vs. practice. He's
more or less convinced me that any list of properties you state for RISC is likely
violated in some way by a processor that claims to be RISC.

Many of the early RISC properties, such as eliminate pipeline interlocks, expose
delay slots, and let the compiler fix everything, have been abandoned. Even
fixed length encoding... RISC-V has an extension for variable length encodings
from 16 bits to 192 bits, IIRC.

CSUN B8 e
e CISC vs RISC Performance i

2021-23
COMP222

**CISC > CPIl = ~5-9 (typ)

“RISC > CPI=~1.4 (typ) mm) 5X faster

Single core, single pipeline
(no instruction level parallelism)

Single-cycle execution |:> +Delays for Load, Branch

¢ Pipeline architecture
** Memory access limited (Load-Store)

CSUN . = s@?@ige
CISC Instruction Cycle

2021-23
COMP222

2]
$2
SYNC
So /
S, L/ /
S; / \ /
T T T2 WAIT T3 STOPPED T4 TS
HIGHER
LOWER 6-BITS EXTERNAL | INSTRUCTION HALT
CPU 8-BITS ADDRESS, MEMORY OR DATA INSTRUCTION EXECUTION OF
INTERRUPTED | ADDRESS TWO BITS NOT READY FETCH, OR | RECEIVED BY INSTRUCTION
ouT CONTROL (OPTIONAL) | DATA OUT CPU
ouT (8-BITS)
= TYPICAL PROCESSOR CYCLE -

INCLUDES T1, T2, T3, T4, TS

MCS-8 BASIC INSTRUCTION CYCLE

CSUN DR JEFF

ALz, . &) soFTwaRE

CISC State Diagram 6 i rovm
2021-23

CO
MP222 — ICU state machine MCS-8 -
MCS-8 BASIC SYSTEM .

INTERRUPT

CPU STATE TRANSITION DIAGRAM

CSUN el 858 sorrware
CISC / RISC Pi pelines © ef Drobman

COMP222
Instructions RISC Pipeline -
@ R3000/SPARC/i960/29K/PPC
4- | I
. . 8 cycles per | fetch One cycle 1 cycle per |
Non pipelined 18008/m6800
I+D fetch|| Execute | I+D fetch || Execute I-dec/Op-fetch
One cycle ' ALU execution
Hardware Interlock
. or
2-4 cycles per | i8088/M68000 Write-back 1 pelay Slot (NOP)
. . (for LOAD, BR)
CISC Pipeline [25tage’ Data
|

- v

I14+D Fetch Exequte
]]

1
I1+D fetch Exedute
I

I14+D fetch Exegute
] I

v

One cycle

DR JEFF

CSUN m Sg,‘;};ﬁﬁgE
STATE UNIVERSITY X8 6 VS R I S C @JezfjocZD;_OZbgman

NORTHRIDGE

Early RISC CPU families like SPARC and HP’s PA-RISC family also set performance
records. During the late 1980s and early 1990s, it was common to hear people say that
CISC-based architectures like x86 were the past, and perhaps good enough for home
computing, but if you wanted to work with a rea/ CPU, you bought a RISC chip. Data

centers, workstations, and HPC is where RISC CPUs were most successful, as illustrated

below:

1980s: PCs onts 1990s: Data Centers 2000s: HPCs

100%
Aton

400/800 Other
RISC
1BM)

ntel Architecture A Intel Architecture

intel Architecture

B0 B2 B84 'B6 ‘88 'S0

Volumes X

This Intel image is useful but needs a bit of context. “Intel Architecture” appears to refer only to x86 CPUs — not chips like the
8080, which was popular in the early computer market. Similarly, Intel had a number of supercomputers in the “RISC” category in
2000 — it was x86 machines that gained market share, specifically.

CSUN : B sorrware
sTATE NSy Section ©.ef Orobmar

COMP222

Pipeline Details

CSUN . . D) sorrware
ChTomy - MIPS RISC Pj pel ine L ot

2021-23
COMP222 / e

Each stage takes only 1/5 of instruction cycle: clock F => 5x

queue finished
, S = _ , S , S , S
"Hb' Q H . . ! . .‘v i . ." : ‘ .’l é ¥ . .’u

e | somw | Wesnjwr | e | an

< Setup =2 <Work—> < Finish =2
__F__| ID/OF _ | ws
Upper Lower

Execution Units
(EU’s)
R3<R1+R2
R format Address Gen
= Base + offset

| format

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

CISC/RISC Pipelines

Hennessy & Patterson

PARTICIPATION
ACTIVITY

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2021-23

4.5

4.5.3: Single-cycle, nonpipelined execution in top versus pipelined execution in bottom (COD Figure 4.27).

Pipelining: An implementation technique in which multiple instructions are overlapped in execution, much like an assembly line.

Program
execution
order

(in instructions)

lw $1, 100($0)

lw $3, 300($0)

v

Program
execution
order

(in instructions)

lw $1, 100($0)
Iw $2, 200($0)

lw $3, 300($0)

v

400

600

800

1000

1200

1400 1600 1800

w $2, 200(30) ¢

200
i i | | | i | >
Instruction Data
fetch |R€9| ALU access Reg
p|Instruction Data
800ps fetch Reg ALU access Reg
< p|Instruction
800ps fetch
—o0ps *
200 400 600 800 1000 1200 1400 1600 1800 >
I | I | I | I
Instruction Data
fetch Reg ALU access Reg
Instruction Data
200ps L_fetch Reg| ALU | access |Re9
<4——)p|Instruction Data
200ps fetch Reg| ALU access | R€d
B > < > < > < > < =
200ps 200ps 200ps 200ps 200ps

DR JEFF
SOFTWARE

e RISC Pipelines: Stages/ States -

2021-23
- Stages - States
Instructions
§ ERh &

| fetch

I-dec/Op-fetch

ALU execution Hardware Interlock
or
LD/BR: 1 cycle Write-back Delay Slot (NOP)

(for LOAD, BR)

Data

D Context switch
Pipeline flush: stages 1-3

Instruction State Diagram < Exceptions/Traps

** Interrupts
s System Calls

DR JEFF

CSUN . . 25| soFTwaRE
mCuroNs MIP S Pi p e | ine d O r g E o firid

2021-23
MP222 o
O MIPS _ Wiki ——
Instruction Fetch Ins&g&?g&? Eeeti?‘de A dgz(eesCSUtCeal . Me cess Write Back
|F ID EX MEM WB
Next PC
— . o
Next SEQ PC Next SEQ PC
RS1
| Branch
222 Register taken
| Fie
o z
. § Q [2 . E
= m z ~
i - . : 3
A . Imm
A A ; A
WB Data

MIPS, showing the five stages (instruction fetch, instruction decode, execute, memory access and write back).

DR JEFF

CSUN

° ° SOFTWAC:RRE
CALIFORNIA INDIE APPDEVELOPE
sraTE U vERS T M | P S P | p e I INne d O rg ©ef Drobman

COMP222 45

MIPS

Figure 4.6.1: The single-cycle datapath from COD Section 4.4 (A simple implementation scheme) (COD
Figure 4

Hennessy & Patterson

IF: Instruction fetch 1D: Instruction decode/ EX: Execute/ MEM: Memory access WE: Write back

=R

1 | | |
I 3 | 3 I
i register file read | address calculation : I
I | | |
| | | I
I | | I
| | | |
1 | | 1
1 | | I
1 | | 1
| | | I
| | | |
1 | | 1
| | | |
1 | | i
> Add @ T | |
4 —> l l Add | X
I | ADD 1 I
1 | > resull ; 1
i | | Shir | 1
1 || leh2 | 1
| | | 1
I | | |
I | | |
: | Read Read : - | :
Addrese : register 1 data 1 I | :
1 Read | | 1
. 1 register 2 | | Address I
Instruction Registers ' | de::
Virie Read | : Data
Inxxﬁ;o regisier data 2 | | memory
Write || o |
data | ! Write
| data
| |
| |
| |
| |
l |
| |
| |
| |
| |
! |
| |
| |
] 1

|
1
|
I
I
I
i
|
|
I 16 32
| A Sign- | |
|
I
I
|
|
|
|
1

- - - -

CSUN

@ DR JEFF
. . Q SOFTWARE
marony RISCP | B i
NORTHRIDGE I p e I n e S 2021_23

COMP222 MIPS Hennessy & Patterson 4.5
Figure 4.5.4: We need a stall even with forwarding when an R-format instruction following a load tries to

St 200 400 600 800 1000 1200 1400

order Time T T r - T T T

(in instructions)

w $s0, 20($t1) El—ﬂ |

NOP bub—b|e? Qﬂ)lej

Q bubble/ \C bubble)

pCQk_/_LﬁJ_

(fitﬂte} LOAD delay slot

MEM

sub $t2, $s0, $t3

Figure 4.5.5: Pineline showina stallina on everv conditional branch as solution to control hazards

Program
execution i 200 400 600 800 1000 1200 1400 N
cedar Time T T T T T T T >
(in instructions)
add $4, 85,86 |™IUon| lgeg| AU | 0% |Reg
Instruction Data

beq $1, $2, 40 200 ps |_tch Reg| ALU < |Reg

Y. S Y Y

NOP CbubbleX bubble bubble bubble 'm - Branch delay slot

W W S e y
or $7, $8, $9 - ~|Instructio Data
| 400 ps f:t’ch ; Reg| ALV access |9

CSUN

[] [}
CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

Branch delay slot Fill —— MIPS

a. From before b. From target

Hennessy & Patterson

c. From fall-through

add $s1, $s2, $s3

if $s1 =0 then ——

Delay slot

sub $t4, $t5, $t6

-

add $s1, $s2, $s3 sub $t4, $t5, $t6 -
if $s2 = 0 then ——
Delay slot add $s1, $s2, $s3
if $s1 = 0 then —
N Delay slot
Becomes Becomes
r
if $s2 = 0 then ——

add $s1, $s2, $s3

add $s1, $s2, $s3

Becomes

J

if $s1 = 0 then

sub $t4, $t5, St6

add $s1, $s2, $s3

if $s1 = 0 then ——

sub $t4, $t5, $t6

Figure 4.8.3: Scheduling the branch delay slot (

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman

CSUN B8 sorrware
Su persca lar oo

NORTHRIDGE

COMP122

2 Su per- Scalar SISD Thi Th2 Th3
O Multiple Execution Units (multi-issue pipelines)
5 Unit Unit Unit
= each EU = ICU+ALU, with shared GR’s

U Hardware + compiler schedules instruction streams

Thl 2Ui0 pipelinel [IF | ID | EX [MEM
Th2 - = pipeline2 IF ID | EX MEM

} IF | ID | EX
J IF | D | EX |
IF | ID WB |
IF MEM| WB |
IF MEM W8 |
EX |MEM WB
EX |MEM WB |

Simple superscalar pipeline. By fetching and =

dispatching two instructions at a time, a maximum of
two instructions per cycle can be completed. (IF =
Instruction Fetch, ID = Instruction Decode, EX =
Execute, MEM = Memory access, WB = Register write
back, i/ = Instruction number, t = Clock cycle [i.e., time))

. Instruction Level Parallelism s

2021-23
COI\/I P222

* . . . Thl
** Super- Pipelining sisb
O Split some pipeline stages (4-5 - 8-11)
[Faster clock cycle = higher throughput (mips)
 Affect CPI?
superscalar

“*Super- Scalar SIsb Tt Thz h3

d Multiple Execution Units (multi-issue pipelines)m

= each EU = ICU+ALU, with shared GR’s
d Hardware + compiler schedules instruction streams

Th1l Th2

¢ Multi- Threading sisp iy
d Multiple control threads (usually 2, same/dif program) MUX | temporal
O Programs can allocate code to threads

d Automatic scheduling of control threads U
d 2 types: SMT/superscalar or temporal (interleaved: coarse/fine)

** Mlulti- Core misb . Th Th2 Th3
[Classic Parallelism: multiple copies of the CPU|jg" = ¢+ oy o

1 Multiple L1/L2 caches (one set per core)
CORE 1 H CORE 2 H CORE 3

CSUN : : : B8 sorrware
Threads in a Pipeline ol probman

2021-23
COMP22 8 Stages

Decode/ Queue Reg Execute Dcache/ Reg Retire
Map Read Store Write
Buffer

i
i
i

’
’
!
I
i i
i i
|

— 3

3

" | :
—_’.‘ _?_’

§ £l i

CSUN

e MIPS R4AK SuperPipeline

COMP222

DR JEFF

82 soFTwaRrE
© Jeff Drobman
2021-23

MIPS R4000 Integer Pipeline

The MIPS R4000 architecture's use of superpipelining increases load and branch delays, and also the amount of forwarding required among the stages.

Load Delays:

If the result of a load is used in the next instruction, it causes a 2 cycle stall in the R4000 pipeline. This is due to the fact that the result of the load is not available to later

instrucitons until the DS stage.

Instruction n 2 B3 14 5 6 7 8] 1o 1
LW R1,(R2) IF [Is |RF [EX |DF IDS Tc wB | y |
|ADD R3,R4,R1 | IF s |RF |stall Istall [EX |DF ps [TC |wB
Branch Delays:

Taken branches result in a 3 cycle stall, as condition evaluation and branch target computation occur in the EX stage.
Instruction n 2 3 4 5 6 7 8 9
[Branch IF [Is |RF [EX IDF IDS TC wB |
[Delay Slot | IF is IRF [EX IDF IDS ITC wB
[stall | y |stall [stall |stall |stall |stall |stall |stall
[Stall | |] |stall |stall |stall Istall |stall |stall
[Branch Target | y]] IF IS IRF [EX IDF
An untaken branch results in no stalls, it simply uses a one cycle delay slot.

Instruction hn 2 3 4 |5 6 7 8 9
[Branch IF Is |RF |[EX [pF |[ps [TC |wB]
[Delay Slot | IF|[is RF [EX |[pF [ps [1C wB
[Branch Instruction + 2 |] IF Is RF [EX |DF |DS ITC
[Branch Instruction + 3 |] | IF s RF [EX |DF DS

DR JEFF
CSUN . B soFrware
AAAAAAAAAA INDIE APPDEVELOPER
TTTTTTT © Jeff Drob
Section

COMP222

Micro Architecture

Qverview

Operane forwarding
Branch prediction
Speculation
Re-Order

OoO00COo

CSUN . E)sorrware
i MT & Micro-Arch S
compr222 Quora 2021-23

Joe Zbiciak replied to your comment on an answer to: "Why does multithreading or
hyperthreading only double your cores as threads? Why not triple or quadruple it?"

So the initial HT implementation was on Pentium 4, which was way off in a different

architectural space with its trace cache, etc.

But once you returned to the Pentium Pro derived architecture (which went through
Banias/Pentium M and became the Core architecture line), yes, superscalar processors
converged on the same general plan;

e A front end that
o renames registers
o squashed moves and NOPs
o decodes instructions into pops
o possibly fuses pops into macro-ops
possibly caches the result
A reorder buffer (ROB) that keeps track of all the outstanding pops/Mops
Multiple execution pipelines for different categories of instructions
Store buffers (incl. speculative store buffers) and store-to-load forwarding structures
Store/load hazard violation detectors (to flush speculative loads that were violated by
a store)

o

And of course the bread and butter branch predictors and prefetch engines for data.

DR JEFF

CSUN . 25 soFTwARE
eSO HT & Micro-Arch O i robmman

compr222 Quora 2021-23

Joe Zbiciak replied to your comment on an answer to: "Why does multithreading or
hyperthreading only double your cores as threads? Why not triple or quadruple it?"

The ROB and parch rename register file really don't care what thread a given instruction
comes from. It's largely a register rename problem.

For address translation, you need to tag all address generation with the logical thread the

address belongs to so the uTLB, main TLB, and MMU table walker translate against the right
translation context.

Likewise for any other privileged operations.

Intel® added a couple patented instructions to Pentium 4 to handle spinlocks more
gracefully in an HT context. Basically, if one HT thread is blocked at a lock, it should yield to
the other threads until something happens that's worth paying attention to. (ARM uses WFE
for something similar, though | have doubts on its scalability.)

In any case, in principle, the ROB + rename file can handle any number of threads.
Depending on how you handle architectural state, you may need to replicate your

architecture register files, or replicate a portion of your rename file in proportion to the
number of hardware threads

CSUN :)-8 vane
eSO HT & Micro-Arc h o
compr222 Quora 2021-23

Joe Zbiciak replied to your comment on an answer to: "Why does multithreading or
hyperthreading only double your cores as threads? Why not triple or quadruple it?"

@ Jeff Drobman - Just now

yeah, so nail on head: now it is the ROB (Re-order Buffer) that manages EU
slot issues which in essence supersedes Intel's "Hyper-threading”. seems all
major CPU’s now use this micro- architecture. note that an ROB can contain
any number of threads, including one, which then becomes simple
superscalar. or am | wrong?

Yes, let's rule out temporal SMT.

For the Hyperthreading-style OoO SMT, the purpose is to increase performance and
efficiency per unit area. Two cores will outperform a single similarly equipped core with
SMT. If you normalize performance per unit of area, SMT wins.

Depending on the workload, 2-way SMT gives maybe 20% to 50% total throughput increase
over a single thread on modern x86s. Workloads with experience a large number of L2/L3

stalls leave the core idle, and so those would benefit from other threads to scavenge
resources.

It's too bad the Thunder X3 won't see the light of day. | was curious how its 4-way SMT was
going to perform.

DR JEFF
CSUN 25| soFTwWARE
aween Quora MIT HW / SW SPI Lo
NORTHRIDGE 2021_23
COMP222 Q Drazen Zoric - Follow

Lives in Cork, Ireland -

- System Programming Interface

Every thread has a block of memory where CPU state is stored during task switch, has
some ID, priority, current thread state, etc. CPU state is copy of all CPU registers, including
floating point but also MMU mappings which belong to a process (thread also has process
ID).

When thread is created OS will create CPU state in memory, will set PC to thread entry
point, EAX register to thread parameter (in Windows thread function is HRESULT
ThreadFunc(LPVOID)), will populate other params (ID, priority, etc) and will add
Thread ID (or pointer on CPU state) into Scheduler.

When time comes to execute a thread, Scheduler will store currently running thread CPU
state into memory, will find next thread to run, copy CPU state from memory into CPU and
on exit from tick interrupt address in PC will be next executed.

If you really wanna see how it works, download FreeRTOS and check in sources how Task
Switch is performed. It's similar to above. For sure Schedulers in Windows/Linux are way
more complex but that's basic operation.

| remember long ago | read how x86 has an instruction to store/restore CPU state in
memory but is not used cause it is too slow.

DR JEFF
CSUN 25| soFTwaRE
aween Quora MIT HW / SW SPI L g5
NORTHRIDGE 2021_23
COMP222 Q Drazen Zoric - Follow

Lives in Cork, Ireland -

- System Programming Interface

@ Jeff Drobman - Just now
&7 thank you for this. | teach multi-threading architecture, but was missing this detail.
but, seems you are addressing only Coarse-grained Temporal MT, where a “thread

switch” occurs. SMT does no switching, but | suppose the handling of threads by the
OS is the same.

CSUN : B sorrware
Operand Forwarding S e

2021-23
COMP222

. Arup Das, BE from Siddaganga Institute of Technology (2019) ®

Answered June 27
In today's architecture dependencies between instructions are checked statically by the
compiler and/or dynamically by the the hardware at runtime.

Dynamic pipeline scheduling allows out of order execution giving rise to WAR and WAW
data hazards (Reference: Computer Organization and Architecture | Pipelining | Set 2
(Dependencies and Data Hazard) - GeeksforGeeks 7').

For dynamic dependency checking there are 2 techniques (Reference:
http://www2.cs.siu.edu/~cs401/Textbook/ch3.pdf (') :

1. Tomasulo's Method

2. Scoreboard Method

CSUN : B sorrware
Operand Forwarding S e

COMP222

Now coming to operand forwarding. In a pipelined processor which allows in-order
execution of instructions, operand forwarding which is a hardware technique is used to
reduce or prevent stalls created to prevent RAW Hazards (Reference:
http://meseec.ce.rit.edu/eecc551-spring2012/551-3-26-2012.pdf 7).

Operand forwarding or Memory forwarding is nothing but forwarding the data from
output of one stage to input of another stage as soon as the data to be forwarded is
ready. Data forwarding takes place from "left to right” in time and it solely depends
upon the type of instruction and when the data is required during the execution of the
dependent instruction. (Reference:
http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/forward.html ')

Data is forwarded either to EX stage or to MEM stage.

NOTE: Split phase technique is used to forward data between EX stage and Decode
stage OR WB stage and Decode stage (because generally whenever we need to write
anything into register, this will be done at rising edge, and reading at falling edge). This
happens within a single clock cycle unlike operand forwarding where the data is
forwarded only after the previous clock cycle is complete.

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

@ DR JEFF
IQI SOFTWARE

Data Forwarding
MIPS Hennessy & Patterson 4.5
Program
exacution 200 400 600 800 1000
order Time T T T T T

(in instructions)

add $s0, $t0, $t1 —!s
MEM 4ﬂs

sub $t2, $s0, $t3

CSUN : 23 sorrware
Operand Forwarding i

2021-23
COMP222

Forwarding

The problem with data hazards, introduced by this sequence of instructions can be solved with a simple hardware technique called forwarding.

| | (R ST 4 g 6 7
|ADD [R1,R2,R3 IF D [EX IMEM |WB | |
suB [R4,R5, R1 L F D EX MEM WB |
IAND IR6,R1,R7 | | IIF ID,.q EX MEM WB

The key insight in forwarding is that the result is not really needed by SUB until after the ADD actually produces it. The only problem is to make it available for SUB when it needs it.

If the result can be moved from where the ADD produces it (EX/MEM register), to where the SUB needs it (ALU input latch), then the need for a stall can be avoided.
Using this observation , forwarding works as follows:

Q The ALU result from the EX/MEM register is always fed back to the ALU input latches.
QIf the forwarding hardware detects that the previous ALU operation has written the register corresponding to the source for the current ALU operation, control logic selects the
forwarded result as the ALU input rather than the value read from the register file.

DR JEFF

CSUN

o SOFTWARE
" INDIE APPDEVELOPER
R Operand Forwardin
NORTHRIDGE 2021_23
COMP222
Without forwarding our example will execute correctly with stalls:

| [[S 2B i 5 6 7 8 9

|ADD [R1,R2,R3 [F [ID [EX MEM WB |

SUB R4,RS,R1 [F [stall |stall Dy, EX MEM IWB

AND R6, R1,R7 [stall [stall IF ID,.q EX IMEM WB

As our example shows, we need to forward results not only from the immediately previous instruction, but possibly from an instruction that started three cycles earlier. Forwarding can be
arranged from MEM/WB latch to ALU input also. Using those forwarding paths the code sequence can be executed without stalls:

L 4 5 6 7
ADD R1,R2,R3 IF D [EX,aq MEM, 44 WB

SUB R4,R5,R1 IF [ID EX b MEM WB

AND R6,R1,R7 L [IF ID EXand MEM WB

The first forwarding is for value of R1 from EX_ ;4 to EX_ ; .
The second forwarding is also for value of R1 from MEM, 4, to EX_ ..
This code now can be executed without stalls.

Forwarding can be generalized to include passing the result directly to the functional unit that requires it: a result is forwarded from the output of one unit to the input of another, rather than just
from the result of a unit to the input of the same unit.

CSUN

NORTHRIDGE

N Operand Forwarding

COMP222

One more Example

To prevent a stall in this example, we would need to forward the values of R1 and R4 from the pipeline registers to the ALU and data memory inputs.

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2021-23

| | [t " 4 5 6

IADD R1,R2,R3 [F |[D [EX 44 MEM, 44 WB

LW R4,d (R1) IF |ID EX|\ MEM,,, WB

sW R4,12(R1) | lIF D EX,, MEM_,,

Stores require an operand during MEM, and forwarding of that operand is shown here.
The first forwarding is for value of R1 from EX, 44 to EX . .

The second forwarding is also for value of R1 from MEM_ ;4 to EX_ .

The third forwarding is for value of R4 from MEM; to MEM,,. .

Observe that the SW instruction is storing the value of R4 into a memory location computed by adding the displacement 12 to the value contained in register R1. This effective address
computation is done in the ALU during the EX stage of the SW instruction. The value to be stored (R4 in this case) is needed only in the MEM stage as an input to Data Memory. Thus the value
of R1 is forwarded to the EX stage for effective address computation and is needed earlier in time than the value of R4 which is forwarded to the input of Data Memory in the MEM stage.

So forwarding takes place from "left-to-right" in time, but operands are not ALWAYS forwarded to the EX stage - it depends on the instruction and the point in the Datapath where the operand is

needed. Of course, hardware support is necessary to support data forwarding.

DR JEFF
' SOFTWARE

CSUN

hromy MIPS R4K Su per Pi pe | ine E i
NORTHRIDGE 2021'23

COMP222 Data Forwarding

Forwarding

When compared to the simple 5-Stage DLX, the R4000 requires many more levels of forwarding.

5-Stage DLX forwarding for ALU register-register instructions can occur from the EX/MEM or the MEM/WB registers. The following table shows the possible sources and
destination of forwarding for the 5-Stage DLX Integer pipeline.

Pipeline Register |Opcode of Source Pipeline Register Opcode of Destination Destination of
Source Instruction Destination Instruciton Forwarded Result
[EX/MEM [Register-register ALU |ID/EX Al [Top ALU Input
[EX/MEM IRegister-register ALU [ID/EX IRegister-register ALU [Bottom ALU Input
IMEM/WB [Register-register ALU [ID/EX Al [Top ALU Input
[MEM/WB [Register-register ALU [ID/EX IRegister-register ALU [Bottom ALU Input
[EX/MEM |ALU Immediate ID/EX Al [Top ALU Input
[EX/MEM |ALU Immediate ID/EX [Register-register ALU [Bottom ALU Input
IMEM/WB IALU Immediate ID/EX Al [Top ALU Input
IMEM/WB IALU Immediate ID/EX IRegister-register ALU [Bottom ALU Input
IMEM/WB |Load ID/EX Al [Top ALU Input
IMEM/WB |Load ID/EX IRegister-register ALU [Bottom ALU Input

* Note: 'All' corresponds to the following instruction types: Register-register ALU, ALU-Immediate, Load, Store, and Branch

DR JEFF

&) SOFTWARE
Lo
2021-23

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

MIPS R4K SuperPipeline

Data Forwarding

The R4000 pipeline has four sources for ALU register-register operations: EX/DF, DF/DS, DS/TC, TC/WB. The following table shows the possible sources and
destinations of forwarding for the R4000 Integer pipeline.

Pipeline Register |Opcode of Source Pipeline Register Opcode of Destination |Destination of
Source Instruction Destination Instruciton Forwarded Result
[EX/DF IRegister-register ALU [RF/EX Al [Top ALU Input
[EX/DF IRegister-register ALU [RF/EX Register-register ALU [Bottom ALU Input
IDF/DS IRegister-register ALU [RF/EX Al [Top ALU Input
IDF/DS IRegister-register ALU |RF/EX IRegister-register ALU [Bottom ALU Input
IDS/TC IRegister-register ALU |RF/EX Al [Top ALU Input
IDS/TC IRegister-register ALU |RF/EX IRegister-register ALU [Bottom ALU Input
[TC/WB [Register-register ALU [RF/EX Al [Top ALU Input
[TC/WB IRegister-register ALU [RF/EX Register-register ALU [Bottom ALU Input
[EX/DF IALU Immediate IRF/EX Al [Top ALU Input
[EX/DF IALU Immediate IRF/EX [Register-register ALU [Bottom ALU Input
IDF/DS IALU Immediate IRF/EX Al [Top ALU Input
[DF/DS |ALU Immediate IRF/EX [Register-register ALU [Bottom ALU Input
IDS/TC IALU Immediate IRF/EX Al [Top ALU Input
IDS/TC IALU Immediate IRF/EX IRegister-register ALU [Bottom ALU Input
[TC/WB IALU Immediate IRF/EX Al [Top ALU Input
[TC/WB IALU Immediate IRF/EX [Register-register ALU [Bottom ALU Input
IDS/TC |Load IRF/EX Al [Top ALU Input
[DS/TC [Load IRF/EX [Register-register ALU [Bottom ALU Input
[TC/WB [Load IRF/EX Al [Top ALU Input
|TCNVB |Load]RF/EX]Register—register ALU]Bottom ALU Input

* Note: 'All' corresponds to the following instruction types: Register-register ALU, ALU-Immediate, Load, Store, and Branch

CSUN : Bl sorrware
Micro-Arch: Branches & e

2021-23
COMP222

What is branch prediction in computer architecture?

@ Jeff Drobman, Lecturer at California State University, Northridge (2016-present)
it

¥ Answered 4m ago

branch prediction: instruction control units fetch instructions in sequence, until a
branch (or jump) instruction. conditional branches may or may not result in a branch,
but the ICU has to decide which instruction to fetch next: the next one or the branch
target. while an ICU could be designed to always make the same choice, it is more
efficient to predict which way to go. typically, branch prediction can add a small (5-
10%) boost to performance (CPI).

CSUN L. 23 sorrware
Branch Prediction i

comp222 Quora

’ Dani Richard - Follow eee X
A B.S. in Information and Computer Science & Systems Programming, Georgia Institute of
Technology - 2y

Related Can branch prediction go beyond 99%? If so how does it affect the
performance, and what's the newest type of branch prediction scientists are
working on?

Question: Can branch prediction go beyond 99%? If so how does it affect the performance,
and what's the newest type of branch prediction scientist are working on?

Answer: | only have knowledge to answer your first question.

Yes, the PowerPC G5 processor had three branch processing sub-units. Assuming all were
available and an un-resolved branch was encountered, a branch-sub unit would start
executing down BOTH branches! Should another condition branch be encountered, a
speculative branch based either history or hit would be taken. Any additional branches
encountered would cause a stall until branches resolved. When the first branch is resolved,
the Not-Taken computations would be throw away. They become waste heat. With at least
two branch sub-units available, all branches are correctly taken. That waste heat for
computations not used contribute to G5s running hot.

CSUN

CALIFORNIA

Branch Prediction

= DR JEFF
25| soFTwaRE

INDIEAPPDEVELOPER

STATE UNIVERSITY © Jeff Drobman
NORTHRIDGE 2021_23
COMP222
O @ BHT Simulator, Version 1.0 (Ingo Kofler)
Branch History Table Simulator
of BHT entries 16 BHT history size 1 Initial value = TAKE

Instruction Prediction Correct Incorrect Precision
0 T TAKE 1 0 100.00
1 NT NOT TAKE 2 1 66.67
2 T TAKE 0 0 0.00

@ Address 3 T TAKE 4 4 50.00
4 T TAKE 0 0 0.00
5 T TAKE 0 0 0.00
7 NT NOT TAKE 4 1 80.00
8 T TAKE 0 0 0.00
9 T TAKE 0 0 0.00
10 T TAKE 0 0 0.00
11 T TAKE 0 0 0.00
12 T TAKE 0 0 0.00
13 NT NOT TAKE 4 1 80.00
14 T TAKE 0 0 0.00
15 NT NOT TAKE 3 1 75.00

CSUN . . B sorrware
. Cache Simulation & oo
NORTHRIDGE 2021_23
COMP222
@ O Data Cache Simulation Tool, Version 1.2

Simulate and illustrate data cache performance
Cache Organization

Placement Policy Direct Mapping Number of blocks 8
Block Replacemgnt Policy LRU Cache block size (words) 4
Set size (blocks d Cache size (bytes) 128

Cache Performance

[—
Memory Access Count 510| CacheiBlockTablel
block 0 at to [—
CachehiitiCotint a6 E [
[= empty [
Cache Miss Count 14 o it [—
—
Cache Hit Rate e fiiee——] = miss]

Runtime Log

Enabled
Tool Control

- Disconnect from MIPS | Reset Close

DR JEFF
CSUN 25| soFTwWARE
. O O E % R O B el
NORTHRIDGE 2021_23

comp222 Quora SPARCS

& Joe zZbiciak A - 1h ago

Up until near the end, SPARC was in-order, and they made use of their execute
resources with extreme threading. Peak single thread performance wasn't the
objective,,peak throughput for the system was.

On x86, single thread performance is still king. And with two virtual threads per
core you can still do OK on highly threaded tasks.

SPARC's deep multithreading was designed to hide memory latency.

You can also get there with more cores and fewer hardware threads per core. If
a large enough portion of your benchmark is dominated by single thread
performance (or threads that have good cache locality), the latter is a more
compelling configuration.

CSUN 2 soFrware
ARM SIMD Re-Order o

COMP222

—_——————— Yy ————

e “ARM has also 1ntroduced SIMD extensions to ARM-Cortex architecture
with their NEON technology” (8).

Instruction
stream
Instruction
addvab,c
mulvd, b, e Instruction dependencies
mulvf, a e fetch add.va. b, c
addva, d g ‘
frulvh, a, f mul.v‘, b e
Instruction mulvf, 3, e
decooe *
add.v;, d.g
| fmulvh, af
addva,dg Schedule
mulvf, a e
muivd b e
addva b, c
frulw b, &, f
Integer Integer Integer Integer Floating point |~ Floating point Floating point | Floating point

ALU ALU ALU AlLU ALU ALU ALU ALU

Write
reordering

a—— DR JEFF

CSUN . B8 sorrwaRe
STATE NIy EReITY JoesproevsLonex
RRRRRRRRRR Section

COMP222

Brand Micro-architecture

= x86

= ntel
= AMD
= Apple
= Fujitsu

CSUN 83 soFrware
r AT x86 uArch O et Braman

2021-23
COMP222 ""'BEMETFCH

(=7 AN INE=l"1

And here, at last, we arrive at the heart of the question: Just how heavy a penalty do
modern AMD and Intel CPUs pay for x86 compatibility?

The decode bottleneck, branch prediction, and pipeline complexities that Agner refers to
above are part of the “CISC tax” that ARM argues x86 incurs. In the past, Intel and AMD
have told us decode power is a single-digit percentage of total chip power consumption.
But that doesn’t mean much if a CPU is burning power for a micro-op cache or complex
branch predictor to compensate for the lack of decode bandwidth. Micro-op cache power
consumption and branch prediction power consumption are both determined by the
CPU’s microarchitecture and its manufacturing process node. “RISC versus CISC” does
not adequately capture the complexity of the relationship between these three variables.

It's going to take a few years before we know if Apple’s M1 and future CPUs from
Qualcomm represent a sea change in the market or the next challenge AMD and Intel will
rise to. Whether maintaining x86 compatibility is a burden for modern CPUs is both a new
question and a very old one. New, because until the M1 launched, there was no
meaningful comparison to be made. Old, because this topic used to get quite a bit of
discussion back when there were non-x86 CPUs still being used in personal computers.

AMD continues to improve Zen by 1.15x — 1.2x per year. We know Intel’s Alder Lake will
also use low-power x86 CPU cores to improve idle power consumption. Both x86
manufacturers continue to evolve their approaches to performance. It will take time to see
how these cores, and their successors, map against future Apple products — but x86 is
not out of this fight.

CSUN 83 soFrware
r AT x86 uArch O et Braman

2021-23
IFPYE =y TREMETECH

hl\ [p ™ M

The complicated x86 ISA makes decoding a bottleneck. An x86 instruction can
have any length from 1to 15 bytes, and it is quite complicated to calculate the
length. And you need to know the length of one instruction before you can begin to
decode the next one. This is certainly a problem if you want to decode 4 or 6
instructions per clock cycle! Both Intel and AMD now keep adding bigger micro-op
caches to overcome this bottleneck. ARM has fixed-size instructions so this
bottleneck doesn’t exist and there is no need for a micro-op cache.

Another problem with x86 is that it needs a long pipeline to deal with the
complexity. The branch misprediction penalty is equal to the length of the pipeline.
So they are adding ever-more complicated branch prediction mechanisms with
large branch history tables and branch target buffers. All this, of course, requires
more silicon space and more power consumption.

The x86 ISA is quite successful despite of these burdens. This is because it can do
more work per instruction. For example, A RISC ISA with 32-bit instructions cannot
load a memory operand in one instruction if it needs 32 bits just for the memory
address.

In his microarchitectural manual, Agner also writes that more recent trends in AMD and
Intel CPU designs have hearkened back to CISC principles to make better use of limited
code caches, increase pipeline bandwidth, and reduce power consumption by keeping
fewer micro-ops in the pipeline. These improvements represent microarchitectural offsets
that have improved overall x86 performance and power efficiency.

~ DR JEFF
CSUN 25 soFTWARE
. X86 uArch & iff rabr
NORTHRIDGE 5021-23

RS EXTREMETECH
The K5 re-used parts of the execution back-end AMD developed for its Am29000 family
of RISC CPUs, and it implements an internal instruction set that is more RISC-like than the
native x86 ISA. The RISC-style techniques NexGen and AMD refer to during this period
reference concepts like data caches, pipelining, and superscalar architectures. Two of
these — caches and pipelining — are named in Patterson’s paper. None of these ideas are
strictly RISC, but they all debuted in RISC CPUs first, and they were advantages
associated with RISC CPUs when K5 was new. Marketing these capabilities as “RISC-like”
made sense for the same reason it made sense for OEMs of the era to describe their PCs
as “IBM-compatible.”

The degree to which these features are RISC and the answer to whether x86 CPUs
decode RISC-style instructions depends on the criteria you choose to frame the question.
The argument is larger than the Pentium Pro, even if P6 is the microarchitecture most
associated with the evolution of techniques like an out-of-order execution engine.
Different engineers at different companies had their own viewpoints.

How Encumbered Are x86 CPUs in the Modern Era?

The past is never dead. /t's not even past — William Faulker

It’s time to pull this discussion into the modern era and consider what the implications of
this “RISC versus CISC” comparison are for the ARM and x86 CPUs actually shipping
today. The question we’re really asking when we compare AMD and Intel CPUs with
Apple’s M1 and future M2 is whether there are historical x86 bottlenecks that will prevent
x86 from competing effectively with Apple and future ARM chips from

s DR JEFF
CSUN 25 soFTWARE
T x86 uArch Ly
NORTHRIDGE N S 2021-23
soVIo¥yd EXTREMETECH
Now, compare the Pentium against the AMD Kb5.

o » : AMDZ\
—{ Prefetch & Decode Instruction Cache
AMD-KS

---------------------- (16 KiB, dual-tagged, 4-way assoc.)

—— - Linear Tags

Branch Prediction e | L
Byte Queue
Quad instruction decoders

4 RISC86
Decode

=s. [RS y LM
Store Store
1 ¥ ¥ Y
Y
-] Reorder Buffer ©~ | i - Store Buffer |
(ROB)
' . L Dati Cache
- Register File (8 KiB, dual-tagged, duakported w/
(x86 GPRs, FPs) 4 banks, 4-way assoc, writeback)
¥ > Linear Tags
Memory Management Unit
.. - (TLBs and Physical Tags)
R.S. Reservation Station v
---------- Address ; -
—— Data Bus Interface Unit -t

V 32-bit e 64-bit

CSUN 83 soFrware
r AT x86 uArch O et Braman

2021-23
COMP222 ""'BEMETFCH

(=7ANRAY =1 M
The P6 microarchitecture was the first Intel microarchitecture to implement out-of-order

execution and a native x86-to-micro-op decode engine. P6 was shipped as the Pentium
Pro and it evolved into the Pentium Il, Pentium 3, and beyond. It’s the grandfather of
modern x86 CPUs. If anyone ought to know the answer to this question, it would be
Colwell, so here’s what he

Intel’s x86’s do NOT have a RISC engine “under the hood.” They implement the x86
instruction set architecture via a decode/execution scheme relying on mapping the
x86 instructions into machine operations, or sequences of machine operations for
complex instructions, and those operations then find their way through the
microarchitecture, obeying various rules about data dependencies and ultimately
time-sequencing.

The “micro-ops” that perform this feat are over 100 bits wide, carry all sorts of odd
information, cannot be directly generated by a compiler, are not necessarily single
cycle. But most of all, they are a microarchitecture artifice — RISC/CISC is about the
instruction set architecture... The micro-op idea was not “RISC-inspired”, “RISC-like”,
or related to RISC at all. It was our design team finding a way to break the
complexity of a very elaborate instruction set away from the microarchitecture
opportunities and constraints present in a competitive microprocessor.

sTATE U Section © Jeff Drobman

2021-23
COMP222

Intel

e [ntel Micro-architecture — eas
COMP222
— 32K L1 Instruction L
I-cache
MSROM Deood;lmd\e Legacy Decode
, (DsB) Pipeline
l“w"‘/‘we 6 uops/cyde 5 uops/cyde

L4 v
Instruction Decode Queue (IDQ,, or micro-op queue)

y
Allocate/Rename/Retire/MoveElimination/Zeroldiom |

, —— L2 cache
| Scheduler |
256K L2 Cache
O P P P e - = o
Port 0 Port 1 Port5 Port 6 LD/STA
Int ALU, Int ALU, Int ALU,
Vec FMA, Fast LEA, Fast LEA, o, ,| Port3
VecMUL, | | VecFMA, | | vecsHur, | | 'mtshft, LD/STA B
VecAdd, | | VeeMut, | | vecAw, | | Branchl,
Vec AL, Vec Add, ovT » 32K L1 Data Cache
Vec Shit, Vec ALU, y Portd >
Divide, | | Vecshit, =1L —*.——— D-cache
Branch2 Int MUL,
Slow LEA Port 7
STA

Figure 2-1. CPU Core Pipeline Functionality of the Skylake Microarchitecture

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

64 Bit
Data Bus

32 Bit
Address
Bus

Control

Bus
Unit

Intel uArch

@ DR JEFF
Q SOFTWARE

© Jeff Drobman
2021-23

Intel Pentium Microarchitecture

Prefetch | TLB Code Cache
Address
el 8 KBytes
y A
N ISC
Instr'uction Prefetch Buffers Contol
wls Eointer Instruction Decode > RO
ol
Si<
<|®
i g g Y l
@ [Control Unit
\ A
<> <€—»| Address Address -
'DLTr?ite Generate Generate
> (U Pipeline) | (Y Pipeline) Control
Register File
e 4% i
64 Bit 32 Bit
Data Address 32 DataCache '132
Bus Bus 7 7
#2325 8 KBytes 2

TLB

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

Intel uArch

Data Frontside
Bus
(2x 133 Mhz)

L3 Cache - and
Systembus
Control

128

Backside Bus
from / to L3 Cache

The Intel Itanium architecture

(=)

[tanium

PC

8 Bundles

6 Instructions

128 Integer
Registers

DR JEFF
SOFTWARE

INDIE APPDEVELOPER

© Jeff Drobman
2021-23

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

Iintel

=Ups
fuses cperations
together 1o enable
fasier execubon of

77 Million Transistors

FUSION -

W DR JEFF
) soFTwARE

Intel uArch
M
Pentium™ M Processor Overview

Streaming SIMD

Extensions /i

—’ COMpatDie with
Pentum® 4
Processor
optmaed software

INStrucHonNs at \ower

Dol ",f!n:,‘ w1 k

——— . : faster nstruchon
:' e at mt ~_: D ’ 2l lower power

for increased performance Sl Lt iovels

Enhanced Intef

SpeoedStep
Technology - Multple
voltages & frequency
operating pomts

IMEB FPower

Optimized LZ Cache

- enables hgher CPU

pécformance
AQQ' "4",' p-’i"n’,‘f

Ontimired System Bus
- faster system bus o
enhance performance at
lower power levels

AAAAAAAAAA
TTTTTTTTTTTTTTT

COMP222

)
O
o
©
=
| -
O
(Pl
-
Q
B

AMX

Intel Architecture Day

2021-23

| Lake

Architecture Day New Architectural Foundations

e.
= Xe-core

i3 Thread
Core Director

Sapphire

XeHPC &
Ponte
Vecchio

Alder

1| Mount Evans

Source: Intel Architecture Day (highlight added by author)

CSUN : B soFrware
e Architecture Day 2021
COMP222

After claiming that the Golden Cove represents Intel’s largest architectural

shift in over a decade, Yoaz went on to provide additional architecture

details, including:

e To reduce latency the length decode was doubled to run at 32 bytes per

cycle and 2 decoders were added (increasing from 4 to 6)

e Double the number of 4K pages stored in iTLB to better support software

with a large code footprint

e A 2x+ branch target buffer that utilizes a machine learning algorithm

for improved branch prediction and reduced jump mispredicts

e Awider, deeper, and smarter out-of-order engine

e Enhanced integer execution units with increased single-cycle operations

e Improved memory subsystem with reduced effective load latency and

increased parallelism

CSUN : B3 sorrware
e Architecture Day 2021 e

2021-23
COMP222

Robinson went on to provide additional microarchitecture details,
including:

e Improved branch prediction with a 5,000 entry branch target cache

e 64KB instruction cache

e Intel’s first on-demand instruction length decoder, which enables

bypassing the length decoder on subsequent execution, increasing

performance while saving power

e Hardware-driven load balancing that extracts parallelism via a 256-
entry out-of-order window and seventeen execution ports.

e Adualload + dual store memory subsystem

CSUN : B8 sorrware
e Architecture Day 2021 e

2021-23
COMP222

Out of Order Engine

Irack pop dependencies and dispatch ready pops to execution units

-
Wider

5 - 6 wide allocation
10 - 12 execution ports

I
Deeper

512-entry Reorder-Buffer and larger
Scheduler sizes

Smarter
More instructions “executed” at
rename / allocation stage

CSUN : B8 sorrware
sATE OISy Section © Jeff Drobman

COMP222 o

ANMD

DR JEFF

CSUN e1. |83 soFTwaRE
e AMD VS | ntel - CPU Fami | e Josarroemonm
NORTHRIDGE 2021_23

COMP222

‘l (intel"
et segment a0 mal

Desktop Ryzen 4K/Athlon 3K Core i7/i9
(10th gen)
Laptop Ryzen 4000 Ice Lake

Ryzen Threadripper

Core Extreme
+Radeon

Gaming

Server/Workstn Epyc Xeon

According to the company, the AMD Ryzen 4700 G series desktop processor offers up to 2.5x
multi-threaded performance compared to the previous generation, up to 5% greater single-thread
performance than the Intel Core i7-9700, up to 31% greater multithreaded performance than the

Intel Core i7-9700, and up to 202% better graphics performance than the Intel Core i7-9700.

CSUN AMD’ 5 Pt
MD’s Zen o
COMP222 e

AMD News
AMD's new Zen Processor

AMD made radical alterations to its Zen design while keeping itself distant from an ugly past. The
company knew it had to make the changes to become a force to reckon with in the server and PC
markets. So when the designers of the chip sat down to map the Zen design, they had two priorities: To
boost CPU performance to maximum and to stabilize power efficiency.

According to a company spokesperson, the chips will come with 8 to 32 cores. The 32-core chips may
come in the quad-CPU configurations although those details haven’t been finalized yet.

5-19B Transistors ** CPU performance 8-32 cores

AMD Zen ° . .
stock news usa (2016) ¢ Power efficiency

(Click image to view full size)

Source: stocknewsusa (2016-08-26) Inside AMD'’s Production Of The Zen CPU

Ryzen

4.8 billion transistors and more than 2,000m of signal wire

Ryzen 7 will have three CPUS to start, all having eight cores and supporting simultaneous multi-threading:

= Ryzen 7 1800X: 8C/16T, 3.6 GHz base, 4.0 GHz turbo, 95W, $499
= Ryzen 7 1700X: 8C/16T, 3.4 GHz base, 3.8 GHz turbo, 95W, $399
a Rvzen 7 1700 8C/16T 30 GHz base 37 GHz turbo £329

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

AMD Zen Cores

To make the CPUs execute the serial code as quickly as possible, they have very
big and complex cores which have things like very advanced branch predictors and
huge caches to minimize time wasted for stalls. The actual execution units are only
very small part of the transistor count or area of the core.

‘f{.‘ -~ n....alal
Sqand pna s

FPU

: 1003

Here is a picture of AMD Zen core. The very small part "ALU" consists all the
execution units for most commonly used integer instructions, and FPU is mostly
the execution units of the floating point and SIMD instructions. L1D$, L11$ and L2$
are cache memory, BPU is branch prediction unit which just tries to guess what the
core should do next to minimize stalls.

DR JEFF
SOFTWARE

INDIEAPPDEVELOPER

© Jeff Drobman
2021-23

CSUN

CALIFORNIA

AMD Zen 2

= DR JEFF
25| soFTwaRE

INDIEAPPDEVELOPER

STATE UNIVERSITY © Jeff Drobman
NORTHRIDGE 2021_23
COMP222
This is AMD Zen2 executor:
: ' 3 .
2 Rename/Allocale Re_;'zfﬁff"e Rename/Allocale o
&’ l l l l Non-Scheduling Queue
= |ALQO | |ALG || ALG2 || ALCS 64 ertries
i "8 .I rt-o: '
Queue
. IIIIII rm =

cal Register File Physic: jlhtq

) aninas

il IHIP

Forwarding Muxes

180 sines

Forwarding Muxes

V'!!

AGU1
A .4? Lo%

As could be see it has separate integer and floating point blocks where integer one has

4/5 units in parallel. In other words, AMD CPUs are capable of executing 4/5 integer
nneratinng in narallel Add tn thic 4 flnatina nnint in narallel

R v

AlLUo

r

i

AAAAAAAAAAA
STATE UNIVERSITY

COMP222

DR JEFF

. 252 soFTwARE
AMD Zen 3 Die i

2021-23

| L1 Instruction

Cache

+

:
. 2 Lével BTB "l Ls 670

CSUN == SOFTWARE
T AMD Zen L3 Cache O eff Brobman

2021-23
COMP222

Qu0ra Q Home Following LS/EBAnswer Ea‘j.Spaces otifications ‘ |
One area that AMD has lagged behind Intel over the lifetime of the Zen brand is In
gaming performance. It's no secret that in the company's push to lower the cost per
core of its flagship processors (through the introduction of chiplet-based
architectures), the design decisions have resulted in more latency between core
complexes. That manifests itself in reduced performance in certain PC gaming
scenarios--especially at the favored 1080p resolution used by most gamers.

“ZEN 2" “ZEN 3"

16MB L3 CACHE —’

32MB L3 CACHE

16MB L3 CACHE

2X L3 Cache Directly Accelerates Core and Cache Reduction in Effective

Accessible Per Core Communication for Camine Memory Latency

This is down to how chips are designed, and, more specifically, how they're laid out on

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

DR JEFF

|mi SOFTWARE
A |V| D Ze N 3 O ieff Drobman

Motherboards & Sockets -

Another way that AMD looks poised to continue its winning streak over Intel is in its
platform and required socket adoption for new PCs, PC builds, and upgrades...or rather,
its of required adoption. Instead of forcing buyers onto a new motherboard platform
with a new style of CPU socket every other generation of chips (the typical cadence in
recent years for Intel's desktop processors), Zen 3 will mark the third launch in the Zen
line to feature some level of compatibility with motherboards based on the now-
venerable Socket AM4.

BIOS UPDATES FOR RYZEN 5000 SERIES

AMD 500 Series Chipsets

GET READY:

/--l

Ao
RYZEN

AMD 400 Series Chipsets

The one caveat? Unlike Zen 2, which is compatible with just about AM4-based
motherboard, the cutoff for Zen 3 is a bit higher up the chipset stack this time. The new
CPUs will work only with motherboards from the X470, B450, and later chipset
generations. (That includes the new X570 and B550 boards.) Plus, it's down to
motherboard manufacturers to make it work, issuing the proper updates.

Back in May, the company clarified Zen 3 AM4 compatibility, claiming that a BIOS
upndate would be reauired for anv users of either X470 or B450 motherboards. Now. we

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

DR JEFF

AIVI D Zen CO reS © Jeff Drobman

2021-23

Each core (DCU) has four 32-lane SIMD units, so that it each core can perform 128
32-bit floating point multiply-accumulations(FMAs) per clock cycle and the whole
chip 5120 32-bit FMAs per clock cycle.

NEW COMPUTE UNIT DESIGN

Irﬂu

WORK GROUP PROCESSOR

e
B
B
| o8
=
B
=

But each Zen2 or Zen3 CPU core also has 2 256-bit (8-lane for 32-bit) SIMD FMA
units, so that each core is capable of calculating 16 32-bit FMAs per clock cycle,
so for 8-core CPU such as 3800X or 5800X, the whole chip can perform 128 32-
bit FMAs per clock cycle.

So, the core count difference between CPUs and GPUs is not many hundreds of
times in reality, it's less than 10 times, and the difference in parallel execution units
is only about 20-40 times, not hundreds of times.

CSUN 83 soFrware
T AMD Zen Cores O eff Brobman

2021-23
COMP222

L=
T A
1) '
l .
| = 1 2 1 b
ll 1 T > 1
I Aar nar e
e L 4 Bg8 §
- ‘ -
ﬂi' T i
|\ EE RS SN E B =
l[1 1 ¥ 1
-+ 4+ --J -4

AMDT

Each core (DCU) has four 32-lane SIMD units, so that it each core can perform 128
32-bit floating point multiply-accumulations(FMAs) per clock cycle and the whole
chip 5120 32-bit FMAs per clock cycle.

DR JEFF

(&) soFTWARE
' © Jeff Drobman
NORTHRIDGE 2021-23
comp222. _ aMpst ——— - March 2021 —
INDUSTRY LEADERSHIP
7Nl DY AO00/ IDCITIDIICT
GEOMEAN OF 22 WORKLOADS “ZEN 3" PERFORMANCE
' CONTRIBUTORS

~19%

%///////% . Cache Prefetching

Execution Engine

—_— Branch Predictor

Micro-op Cache

- Front End

Load/Store

wd =\ “ZEN "

CSUN B8 soFrware

D
CALIFORNIA

STATE UNIVERSITY @JeffDrobman

NORTHRIDGE 2021'23
-AMDOl—-n—r-—+———— - April 2022 —

NDUSTRY LEADER

GEOMEAN OF 25 WORKLOADS “ZEN 3" PERFORMANCE
(Fixed 4GHz Frequency, 8 Cores) CONTRIBUTORS

+19%

/ . Cache Prefetching
—

Execution Engine

Branch Predictor

Micro-op Cache

Front End

. Load/Store

© Jeff Drobman
2021-23

L N 7T 5 April 2022 —

LEADERSHIP POWER EFFICIENCY

Performance per Watt
~2.8X

~2 A4X ~2.5X
~1.9X . -

CORE i 3900XT 5900X 3950X 5950X

DR JEFF

S k
CSUN &%) soFTwARE
STATE UNIVERSITY) Jeff

Ze N 3 o i
2021-23
-AMDOl——r——————— April 2022 —

"ZEN 3" CORES ARE THE FASTEST FOR GAMERS

COMP222

Cinebench R20 1T Performance

~592 ~617 EELEES 0oL

“4 0 R R B

Core 19-1C900IK AMD Ryeer ™9 3900XT AMD Ryeen *55600X AMID Ryeon™ 75800X AMD Ryeer™95900X AMI Ryeon™ 9 5950X

Core i9

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE 2021'23

UL E i AMDOl———————————————— April 2022 —

MAJOR GAMING UPLIFTS WITH “ZEN 3"

1920x1080 Resolution

lioh Im ™

AMD Ryzen™ 9 3900XT m AMD Ryzen™ 9 5900X
+50°/0 +46°/o ‘ ‘
+33% 249 249 : +28Y% 0
' l + o + 0 LE0, +6% ' °© +22% +19%

 eague of Legends™ PUBG™ DOTA™ 2 F1™ 2019 Battlefield™V Total War™: THREE CS:GO™ Shadow of the Tomb Far Cry® New Dawn Ashes of the
(DirectX® 11) (DirectX™ 11) (Vulkan®) (DirectX® 12) (Direc tX* 12) KINGDOMS (DirectX® 9) Raider™ (DirectX*® 11) Singularity™
[Battle Test) (DirectX® 12) [CPL) Test)

(DirectX*® 11) (Vulkan®™)

19% IPC 2X Direct Access L3 Higher Frequencies L
Uplift? Cache Per Core Across the Stack Complex

CSUN

CALIFORNIA

STATE UNIVERSITY

NORTHRIDGE

COMP222

- AMD {1

Zen 3 uArch
“ZEN 3” OVERVIEW

2 THREADS PER CORE (SMT)
STATE-OF-THE-ART BRANCH PREDICTOR

CACHES

DECODE

EXECUTION CAPABILITIES

{ tord b

3 MEMORY OPS PER CYCLE

TWO 256-BIT FP MULTIPLY ACCUMULATE / CYCLE

SF 9| DR JEFF

(&) SOFTWARE
© je}‘}’ bfobman
2021-23
April 2022 —

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222 _ p My

Zen 3 uArch

DR JEFF

\&2) soFTwaRE

© Jeff Drobman
2021-23

April 2022 —

32K I-Cache

' Wa

Branch Prediction

!

!

Decode

Op-cache

Op Queue

i

Dispatch

!

Floating Point Rename

Integer Rename

2R N TN 2NN BN N ! l

Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

FP Register File

2R 2R R R R |

MUL
MAC

Integer Register File

' |

ACU ALU

‘

ACU

|

ALU

I.——I—,—I

Fl
ST

ML
MAC

ADD ADD F2

vy

3 LOADS PER CYCLE
2 STORES PER CYCLE

32K D-Cache

8 Way

Load/Store Queues

S12K L2 (1+D) Cache

8 Way

CSUN B8 sorrware
Zen 2 uArch G ifftrobman

.l T2l MAJOR CHANGES VS. “ZEN 2" ISR

"ZEN 2"
32k E‘l Cache Branch Prediction

Micro-0Op Queue

INTECER

FZK LD Cache

s Wa

CSUN @A) sorrware
Zen 3 uArch i

ARy N LR MAJOR CHANGES VS. “ZEN 2" ik
"ZEN 3"

| 32!.{5"!"' I.— —{ Branch Prediction I

2X Larger L1 BTB (1024)

Improved branch predictor bandwidth

” . INSTRUCTIONS PER CYCLE
“No-bubble” branch prediction ! N S FESEEES !
Faster recovery from misonredict | Decodu I I Op cackw ‘
Faster sequencing of Op-cache fetches
Finer-grained switching of Op-cache pipes l Dp Dusuw
|
| Dispatch

'1,“’ ¢ \wrod Brane hand Cr 1 2 N kor

Int: Lareer windows (+32)

":)""f" p‘.,.' (‘.’J | tency ".-), ._;-';_.- » Ons

' .

EP- 6-wide dispate h and iseue [+ _—“* =heger Remyme Floating Paint Rename
sttt 11 1] | !
Scheduer Scheduler Sthedule Schedwer Scheduler Schedubar
e] T S N . . .
- Integer Registes Flie . = P Acqlster Flle
Higher load bandwidth (+1)
Higher store bandwidth (+1) T T S ' R W L. 2 3 3 3
load/store op: I RET Aty | mw || A | Mo || ooe S | e || aow || e |2 || v
"”'r!\\""' memory "s'[‘l"'!"l'!‘ln detection | | i
L]

TLB: 6 table walkers (+4)

BUACE I TN | 12K Dl | (3] \]
L | Losd!Stare Ousues ’ ‘ 7vin0lr1 he I - l 21 7,"7"‘ Carhe I
\ S x) v

CSUN B3 sorrware
Zen 3 uArch

2021-23

COMP222
-AMDOl———n—————— April 2022 —

aT e
FRONT-END ADVANCES L—

., Faster Branch Predictor Dispatch

. Faster Switchine Between Op-cache
and Instruction Cache

. Faster Branch Mispredict Recovery

. Branch Predictor Accuracyv Tweaks

DR JEFF

CSUN 0.
CALIFORNIA IND ’ER
STATE UNIVERSITY e n 3 u A rC h
2021-23

NORTHRIDGE

COMP222 _ aMDIl ——————— April 2022 —

FETCH/DECODE | i |

Instruction Cache

IMPROVED BRANCH PREDICTION Instruction Byte Queue
Redistributed BTBs for better prediction latency ‘ Pick ’ Op-cache
[b e ‘ Decode ’
~raoer 1 K indirert tarocet arrav (1ITA) l l l l \ l l I l [l l l J
| ower mispredict latent 4 Instructions 8 Macro Ops
OPTIMIZED 32KB, 8-WAY L1l CACHE Micro-Op Queue
irmnrnusd nrefatrhing Microcode ROM

Memory Dependence J

] Stack Engine l Detection

Dispatch

STREAMLINED OP-CACHE

|
" ahall,

DR JEFF

(=3

CSUN \&2) soFTwaRE
mmmm ey Ze n 3 UArC h © Jeff Drobman

2021-23

CoMP222 -AMDO ————00mm—————— April 2022 —

EXECUTION ENGINE
ADVANCES

. Wider Floatine Point Issue

. Wider Integer Issue ! '
: Integer Rename Floating Point Rename
R T R N T O R | i {
. Faster FMAC
Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler
| | D I D T D N ..
., Larger Execution Windows Integer Register File FP Register File

llllilillillll

il ' u
g f\\]p_‘.‘ut INnteoer ﬁqf 3 DIC I/prq e AGU ALY AGU ALY AGU ALY B8R Line M nnnnnn

DR JEFF

CSUN \&2) soFTwaRE

)PER

STA\?;‘/I\EILLII;(I)\}'S:;{;IT\' 2 e n 3 UArC h © eff ro rhan
NORTHRIDGE 2021-23

EULCE AMDOl———r———————— April 2022 —

| NT E X Ec UTI 0 N 6 macro ops pD‘r cycle dispatch

Integer Rename

l l l l

Scheduler 3 Scheduler 2 Scheduler 1 Scheduler 0

96 entry integer scheduler, up from 92

4y 74-entrvy Al LJ/AG srhed lers I I I | I I I I

Integer Register File

| e P TS e e e S I

’]’] i(‘(,vbly,“n f]“‘""\""(‘ un "mrw . .
ALU3 | BRUT | ALU2 | AGUZ | ALU1 | AGUY s;ﬂg AGUOD 3X 64-bit

B

Load/Store Unit

192 entry physical register file (up from 180)

1 AlLLl 32 AGCUs '|':|[‘\v‘;’u|‘}'";'|1 1 _i‘»—j ";"; ln.-—]dg

256 entry ROB, up from 224

CSUN —_— _EjR JEIT
Zen 3 uArch

2021-23
cOMP222 _aMDAA\ ——— - April2022 —

WIDER INTEGER LR
EXECUTION T

] 1 . L] L] L] |

| | | | | | |
v A4 . h J 4 v A4
ALY ALU ALY ALU AGU AGU ACU

PICK BANDWIDTH IS INCREASED

Still same number of “ALU" execution units

"ZEN 3"

Shared ALU/AGU schedulers allow for

h'_q"_:r‘r F*.'1 LSe acrnss ","’.)'h,"/"”.l-:d:n

No increase in register file write ports or
bypass network inputs

ALU ST ST
il | R
AR AGU ALU AGU ALU ACU ALU B

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222 _ p My

FP EXECUTION

Faster 4-cycle FMAC
Increased Dispatch Bandwidth

Separate F2I/Store Units

| areer Scheduler

Zen 3 uArch

89| DR JEFF

2021-23

April 2022 —

Micro-Op Dispatch

!

Floating Point Scheduler

256-bit Load Store [256-bit loads

l

256-bit Floating Point Register File

ISR

Forwarding Muxes

1F98IRa3 ! T |

STORE
F2l

|

MULOD

MACO ‘ ADDO

JEIES

DR JEFF

(=3

CSUN 85 soFTwaARE
Zen 3 uArch S

2021-23

coMp222 _aMmDp ——— - April2022 —

LOAD/STORE ADVANCES

. Higher Bandwidth

. Greater Flexibility

. Improved Memory Dependence Detection

. +4 TLB Walkers

L A | |
¥

Load/Store Queues i

3 LOADS PER CYCLF 32K D-Cache S12K L2 (1+D) Cache

8W;

2 STORFS PFR CYCLF 8 Way

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222 _ p My

LOAD/STORE

64 entry store queue, up from 48
2Kentrv .2 DTLRB

17KR R-wav | 1datacache

Fa

ster copv of short strines

[rﬁnr'*,-‘:rxﬁ nrrf.—:‘rhirm;‘ ACross p']fwm nN "'(1"" =1

diction of store-to-load forw

Better p

re

1ard denendencies

DR JEFF

&) sOFTWARE
©“"Jeff Drobmah
2021-23

Zen 3 uArch

April 2022 —

3 Addresses from Integer Unit

AGUO, AGU1, AGU2

LDQ STQ

| - b
T

32KB Data Cache w/ 3 Load Ports

3
—»MABcJ

/

L1/L2DTLB and Data
Cache Microtags

Retired Store
Buffer

l

Write
Combining
Buffer

l

L2 Write Data

s

Page
Table
Walker

v 3

2X Load Data L2 Read/Write

to FP Unit

2 Requests 3X Load Data
to Integer Unit 32 Byte Data

CSUN 85 sorrware
T, AMD uArch G raman

NORTHRIDGE

COMP222

https://www.amd.com/system/files/documents/security-whitepaper.pdf

a WO W d

R R D

]

INTRODUCTION

This document provides in depth descriptions of AMD CPU micro-architecture and how it handles speculative
execution in a variety of architectural scenarios. This document is referring to the latest Family 17h processors which
include AMD’s Ryzen™ and EPYC™ processors, unless otherwise specified. This document does necessarily describe
general micro-architectural principles that exist in all AMD microprocessors.

AMD’s processor architecture includes hardware protection checks that AMD believes help AMD processors not be
affected by many side-channel vulnerabilities. These checks happen in various speculation scenarios including during
TLB validation, architectural exception handling, loads and floating point operations.

\White Paper | SPECULATION BEHAVIOR IN
AMD MICRO-ARCHITECTURES

51419

CSUN B sorrware
. A |V| D u A rc h F i

2021-23
COMP222

TLB ARCHITECTURE

The x86 architecture uses virtual addressing and hierarchical page tables to map the virtual address to the physical
memory address used to reference caches and memory. This mapping allows privileged system software, whether
the operating system or a hypervisor, to isolate different software environments by only allowing certain areas of
the memory system to be accessed by each respective environment. This isolation is achieved by creating unique
page tables for each environment. These page tables are isolated by either marking the page tables as not-present
in the page table entry or using the protection attribute fields in the page table entry to restrict access.

For performance reasons, processors store a copy of these virtual to physical translations in a Translation Lookaside
Buffer (TLB). AMD processors store translations in the TLB with a valid bit and all the protection bits from the

page table which include user/supervisor, read/write bits along with other information. On each instruction that
uses virtual addresses to access memory, AMD processors access the TLB and use the valid bit and the protection
attributes to decide whether to access the caches. If the protection check fails, AMD processors operate as if the
memory address is invalid and no data is accessed from either the cache or memory. This occurs whether the
access is speculative or non-speculative. When the instruction becomes the oldest in the machine, a page fault
exception will occur. A validated address is required for AMD processors to access data from both the caches and
memory. The result is AMD processors are designed to not speculate into memory that is not valid in the current
virtual address memory range defined by the software defined page tables.

Page Table - Valid, Protection bits

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

64K I-Cache 4 way Branch Prediction

Decode Op-Cache

instructions _ micro-ops

Vertically Threaded = 6 ops dispatched

Floating Point Rename

FLOATING
POINT

INTEGER

Integer Rename

Schedulers Scheduler

Integer Physical Register File FP Register File

2x AGUs L MUL ADD MUL ADD

512K
L2 (1+D) Cache
8 Way

32K D-Cache
8 Way

The above diagram shows how all major blocks are shared within the SMT architecture.

AMD uArch

DR JEFF

252 soFTwARE

INDIEAPPDEVELOPER

© Jeff Drobman
2021-23

SMT OVERVIEW

 All structures available
in 1T mode

* Front End Queues are round robin
with priority overrides
* Increased throughput from SMT

Competitively shared structures

Competitively shared and SMT Tagged

Competitively shared with Algorithmic Priority
B Statically Partitioned

CSUN

CALIFORNIA
STATE UNIVERSITY
NORTHRIDGE

COMP222

AMD uArch

&% DR JEFF
E SOFTWARE

© Jeff Drobman
2021-23

VECTOR

FAULT/TRAP TYPE

DESIGNED TO STOP

SPECULATIVE EXECUTION

SPECULATIVELY FORWARDS DATA TO YOUNGER
DEPENDENT INSTRUCTIONS

0 Divide by Zero(#DE) NO NO
1 Debug Trap(#DB) NO YES
1 Debug Instruction(#DB) YES N/A
3 INT3 Breakpoint(BP) YES N/A
q Overflow (#0F) NO YES
5 Bound(#BR) NO YES
6 Invalid Opcode(#UD) YES N/A
7 Device Not Available(#NM) YES N/A
8 Double Fault(#DF) NO YES
10 Invalid TSS(#TS) NO YES
1" Segment not Present(#NP) NO YES
12 Stack Fault(#SS) NO YES
13 General Protection Data Access(#GP) NO YES
13 General Protection Instruction Mode(#GP) NO NO
14 Page Fault(#PF) NO NO
16 X87 Floating-Point Pending(#MF) YES N/A
17 Alignment Check(#AC) NO YES

CSUN B sorrware
. A |V| D u A rc h F i

2021-23
COMP222

FLOATING POINT SPECULATION

To improve performance of some floating point routines, AMD processors may predict the value of the x87 floating
point control word (FCW) fields precision control (PC) and rounding control (RC) when a FLDCW instruction is
executed. A similar prediction is made for the SSE and AVX register MXCSR with the rounding control (RC),

flush to zero (FTX) and denormals as zero (DAZ) mode bits on a LDMXCSR instruction. In both cases, younger
instructions may speculatively calculate results with the wrong rounding or precision control. When the real value
of the FCW or MXCSR is known and does not match the predicted value, the processor will cause an internal
exception to flush the younger instructions and re-issue them with the correct mode. Software that is sensitive to
this type of speculation can place an LFENCE after the FLDCW or LDMXCSR instruction to restrict speculation.

CONCLUSION

In conclusion, AMD microprocessors have many micro-architectural mechanisms that allow for speculative
execution. For software that cannot use the natural isolation that the TLB provides to prevent speculative
execution into memory, AMD provides other software techniques to prevent speculative execution. These are
described in the Software techniques for Managing Speculation on AMD processors?

AMD believes that our hardware paging architecture and protection checks help AMD processors not be affected
by many side-channel vulnerabilities, regardless of whether Simultaneous Multi-Threading (SMT) is enabled
or disabled.

DR JEFF

CSUN h &) soFTwaARE
e Cache Set Assoc (Ways) o

COMP222
>14nm - 2016-20 ——
L1 data cache per core (KiB) 64 16 ve
L1 data cache associativity (ways) 2 4 8
L1 instruction caches per core 1 0.5 1
Max APU total L1 instruction cache 256 128 192 256 512
(KiB)
1 instruction cache associativity
‘ 2 3 4 8 \
ways)
L2 caches per core ' 1 ‘ 0.5 ' 1 '
Max APU total L2 cache (MiB) 4 2 4

cache associativity (ways)

APU total L3 cache (MiB)

APU L3 cache associativity (ways)

L3 cache scheme Victim N/A Victim

CSUN . B sorriiare
sATE OISy Section © Jeff Drobman

COMP222 o

Apple

CSUN B sorrware
R A PP le A14 uArch G rcman

NORTHRIDGE

COMP222

JIANANDIECH

ngnt-end A[@[P)[]@ Aﬂé}
(Here be dragons) Fﬂ[}'@g&@m

8-Wide Decode

Dispatch / Commit
~630 Reorder-Buffer

>=192KB L1I

INT Rename FP Rename
PRF ~3547?7? Entries PRF~3847?7 Entries

FP/SIMD + fDIV

~154e LDQ J ~106e STQ

256pg 3072pg
L1-DTLB L2-TLB

128KB L1D

FISNANDIECH

CSUN B sorrware
Apple A14 uArch & e
cOMP222 - ANANDIECH

The above diagram is an estimated feature layout of Apple’s latest big core design — what's represented here
is my best effort attempt in identifying the new designs’ capabilities, but certainly is not an exhaustive drill-
down into everything that Apple’s design has to offer — so naturally some inaccuracies might be present.

What really defines Apple’s Firestorm CPU core from other designs in the industry is just the sheer width of
the microarchitecture. Featuring an 8-wide decode block, Apple’s Firestorm is by far the current widest
commercialized design in the industry. IBM’s upcoming P10 Core in the POWER10 is the only other official
design that's expected to come to market with such a wide decoder design, following Samsung’s cancellation
of their own M6 core which also was described as being design with such a wide design.

Other contemporary designs such as AMD’s Zen(1 through 3) and Intel's parch’s, x86 CPUs today still only
feature a 4-wide decoder designs (Intel is 1+3) that is seemingly limited from going wider at this point in time
due to the ISA's inherent variable instruction length nature, making designing decoders that are able to deal
with aspect of the architecture more difficult compared to the ARM ISA's fixed-length instructions. On the
ARM side of things, Samsung'’s designs had been 6-wide from the M3 onwards, whilst Arm’s own Cortex
cores had been steadily going wider with each generation, currently 4-wide in currently available silicon, and
expected to see an increase to a 5-wide design in upcoming Cortex-X1 cores.

Apple’s microarchitecture being 8-wide actually isn't new to the new Al4. | had gone back to the A13 and it
seems | had made a mistake in the tests as | had originally deemed it a 7-wide machine. Re-testing it
recently, | confirmed that it was in that generation that Apple had upgraded from a 7-wide decode which had
been present in the A1l and 12.

CSUN B3 soFrware
CALIFORNIA INDIE APPDEVELOPER

STATE UNIVERSITY A p p I e A 14 u A rC h @Jezf)(;ZDlr_ozbgman

COMP222
Many, Many Execution Units ANANDIECH

Having high ILP also means that these instructions need to be executed in parallel by the machine, and here
we also see Apple’s back-end execution engines feature extremely wide capabilities. On the Integer side,
whose in-flight instructions and renaming physical register file capacity we estimate at around 354 entries,
we find at least 7 execution ports for actual arithmetic operations. These include 4 simple ALUs capable of
ADD instructions, 2 complex units which feature also MUL (multiply) capabilities, and what appears to be a
dedicated integer division unit. The core is able to handle 2 branches per cycle, which | think is enabled by
also one or two dedicated branch forwarding ports, but | wasn't able to 100% confirm the layout of the design
here.

The Firestorm core here doesn’t appear to have major changes on the Integer side of the design, as the only
noteworthy change was an apparent slight increase (yes) in the integer division latency of that unit.

On the floating point and vector execution side of things, the new Firestorm cores are actually more
impressive as they a 33% increase in capabilities, enabled by Apple’s addition of a fourth execution pipeline.
The FP rename registers here seem to land at 384 entries, which is again comparatively massive. The four
128-bit NEON pipelines thus on paper match the current throughput capabilities of desktop cores from AMD
and Intel, albeit with smaller vectors. Floating-point operations throughput here is 1:1 with the pipeline count,
meaning Firestorm can do 4 FADDs and 4 FMULSs per cycle with respectively 3 and 4 cycles latency. That's
guadruple the per-cycle throughput of Intel CPUs and previous AMD CPUs, and still double that of the recent
Zen3, of course, still running at lower frequency. This might be one reason why Apples does so well in
browser benchmarks (JavaScript numbers are floating-point doubles).

Vector abilities of the 4 pipelines seem to be identical, with the only instructions that see lower throughput
being FP divisions, reciprocals and square-root operations that only have an throughput of 1, on one of the
four pipes.

CSUN Bl sorrware
pChuromn A p p | e Al14 U A rc h e

2021-23
COMP222

ANANDIECH
On the load-store front, we're seeing what appears to be four execution ports: One load/store, one dedicated
store and two dedicated load units. The core can do at max 3 loads per cycle and two stores per cycle, but a
maximum of only 2 loads and 2 stores concurrently.

What's interesting here is again the depth of which Apple can handle outstanding memory transactions.
We’'re measuring up to around 148-154 outstanding loads and around 106 outstanding stores, which should
be the equivalent figures of the load-queues and store-queues of the memory subsystem. To not surprise,
this is also again deeper than any other microarchitecture on the market. Interesting comparisons are AMD’s
Zen3 at 44/64 loads & stores, and Intel's Sunny Cove at 128/72. The Intel design here isn’t far off from Apple
and actually the throughput of these latest microarchitecture is relatively matched — it would be interesting to
see where Apple is going to go once they deploy the design to non-mobile memory subsystems and DRAM.

One large improvement on the part of the Firestorm cores this generation has been on the side of the TLBs.
The L1 TLB has been doubled from 128 pages to 256 pages, and the L2 TLB goes up from 2048 pages to
3072 pages. On today’s iPhones this is an absolutely overkill change as the page size is 16KB, which means
that the L2 TLB covers 48MB which is well beyond the cache capacity of even the A14. With Apple moving
the microarchitecture onto Mac systems, having compatibility with 4KB pages and making sure the design
still offers enough performance would be a key part as to why Apple chose to make such a large upgrade
this generation.

CSUN B sorrware
pChuromn A p p | e Al14 U A rc h e

2021-23
COMP222

128KB L1 Caches

On the cache hierarchy side of things, we’ve known for a long time that Apple’s designs are monstrous, and
the Al4 Firestorm cores continue this trend. Last year we had speculated that the A13 had 128KB L1
Instruction cache, similar to the 128KB L1 Data cache for which we can test for, however following Darwin
kernel source dumps Apple has confirmed that it's actually a massive 192KB instruction cache. That's
absolutely enormous and is 3x larger than the competing Arm designs, and 6x larger than current x86
designs, which yet again might explain why Apple does extremely well in very high instruction pressure
workloads, such as the popular JavaScript benchmarks.

The huge caches also appear to be extremely fast — the L1D lands in at a 3-cycle load-use latency. We don't
know if this is clever load-load cascading such as described on Samsung’s cores, but in any case, it's very
impressive for such a large structure. AMD has a 32KB 4-cycle cache, whilst Intel’s latest Sunny Cove saw a
regression to 5 cycles when they grew the size to 48KB. Food for thought on the advantages or
disadvantages of slow of fast frequency designs.

CSUN B sorrware
pChuromn A p p | e Al14 U A rc h e

2021-23
COMP222

16MB L2=LLC Cache

On the L2 side of things, Apple has been employing an 8MB structure that's shared between their two big
cores. This is an extremely unusual cache hierarchy and contrasts to everybody else’s use of an
intermediary sized private L2 combined with a larger slower L3. Apple here disregards the norms, and
chooses a large and fast L2. Oddly enough, this generation the A14 saw the L2 of the big cores make a
regression in terms of access latency, going back from 14 cycles to 16 cycles, reverting the improvements
that had been made with the A13. We don’t know for sure why this happened, | do see higher parallel access
bandwidth into the cache for scalar workloads, however peak bandwidth still seems to be the same as the
previous generation. Another point of hypothesis is that because Apple shares the L2 amongst cores, that
this might be an indicator of changes for Apple Silicon SoCs with more than just two cores connected to a
single cache, much like the A12X generation.

Apple has had employed a large LLC on their SoCs for many generations now. On the A14 this appears to
be again a 16MB cache that is serving all the IP blocks on the SoC, most useful of course for the CPU and
GPU. Comparatively speaking, this cache hierarchy isn't nearly as fast as the actual CPU-cluster L3s of
other designs out there, and in recent years we've seen more mobile SoC vendors employ such LLC in front

CSUN B8 soFrware
S App le A14 uArch o i orobmr

2021-23
COMP222 A NANDIECH

Maximum Frequency vs Loaded Threads
Per-Core Maximum MHz

Performance 1 2998 2890 2890 2890 2890 2890
Performance 2 2890 2890 2890 2890 2890
Efficiency 1 1823 1823 1823 1823
Efficiency 2 1823 1823 1823
Efficiency 3 1823 1823
Efficiency 4 1823

Of course, the old argument about having a very wide architecture is that you cannot clock as high as
something which is narrower. This is somewhat true; however, | wouldn’t come to any conclusion as to the
capabilities of Apple’s design in a higher power device. On the Al4 inside of the new iPhones the new
Firestorm cores are able to reach 3GHz clock speeds, clocking down to 2.89GHz when there’s two cores
active at any time.

We'll be investigating power in more detail in just a bit, but | currently see Apple being limited by the thermal
envelope of the actual phones rather than it being some intrinsic clock ceiling of the microarchitecture. The
new Firestorm cores are clocking in now at roughly the same speed any other mobile CPU microarchitecture
from Arm even though it's a significantly wider design — so the argument about having to clock slower
because of the more complex design also doesn’t seem to apply in this instance. It will be very interesting to
see what Apple could do not only in a higher thermal envelope device such as a laptop, but also on a wall-
powered device such as a Mac.

CSUN : &) sorrware
sTATE U Section © Jeff Drobman

2021-23
COMP222

Fujitsu

e Fujitsu Microarchitecture — esson

2021-23
COMP222

3 . . Micro Architecture -
Microarchitecture of Mainframe and UNIX Server Processors

Fetch Issue Dispatch Reg.-Read Execute Memory Commit
» (SE
Fetch Port 'L | PSw
+> L1188 —» Decode 4y > » EAGA —
- & ksue RSA 5 GPR/HPR =7 EAGB —3 StorePort —» L1D$ Control
Mainframe , ++ : J* Registers
processor Baanch > RSE RUB b EAGC -1 Store Buffer I
Target 3 B —
Address 13 e
ey 128
FPR : EXF —
= RsBR ¥
2
System Bus Interface
-+ M5 — RSM — MDB —
Related to
instruction set
architecture
Fetch Issue Dispatch Reg.-Read Execute Memory Commit
+ (OSE
Fetch Port | PC
+ L1118 —» Decode 4» > EAGA — L
& ksue 2 > Store Port —> L1D$ Control
UNIX t ’ Jv Registers

+
S
|

r

= RSF

|

GPR
444 EAGB —
processor Banch > EXA " =1 store Buffer
:’,:? & rse U3 cus sl o
ress
PR L23
4
B !
System Bus Interface

U
F
4
FU

M
73
£
I

L]
—

